
Towards achieving confidentiality in Hyperledger Fabric
1st Benedikt Hofmann

Cybersecurity Technology
Siemens AG

Munich, Germany
hofmann.benedikt@siemens.com

2nd Prabhakaran Kasinathan
Cybersecurity Technology

Siemens AG
Munich, Germany

prabhakaran.kasinathan@siemens.com

3rd Martin Wimmer
Cybersecurity Technology

Siemens AG
Munich, Germany

martin.wimmer@siemens.com

Abstract—Enterprise blockchain use cases have confidentiality
requirements when executing cross-organizational business processes
or workflows across their corporate boundaries. For instance, only a
certain privileged subset of organizations may know of the workflow’s
existence and is allowed to access sensitive workflow’s data assets
such as price information. A private or permissioned blockchain such
as Hyperledger Fabric (HLF) provides many features to support
those enterprise use cases that require confidentiality. Nevertheless,
the blockchain architects need to decide when it comes to how to use
them, when to use them, and what are the performance and security
implications of those design decisions. This work presents a generic
methodology to design a secure Hyperledger Fabric (HLF) blockchain
architecture with a given security requirements. To achieve that,
we developed and used a novel formal description to specify a
generic multilateral workflow in the context of an enterprise use
case. Furthermore, the security of the resulting architecture is
evaluated against an attacker model and relevant countermeasures
are presented. In addition, the performance impact of proposed
changes is evaluated using the Hyperledger Caliper benchmarking
framework.

I. Introduction

Manufacturing of specialized products most often involves a
complex supply chain spanning across multiple organizations
and borders. Every organization has its own business processes,
but to work with each other they agree on certain conditions
or processes, which we refer to as workflows. These cross-
organizational workflows are not orchestrated by a trusted
authority. Hence, the individual steps of the workflow are typ-
ically executed on side of organizations and the resulting data
or assets need to be exchanged out-of-band. Thus, these cross-
organizational business processes or workflows are orchestrated
in a decentralized fashion.

Let us take an example enterprise use case presented in [1],
that involves cooperation of four organizations to fabricate a
product. 1. The Owner/Customer orders a cabinet to operate
it in a power plant. 2. The notification body (NOBO) certifies
the correct production and conformity of the produced cabinet.
3. The engineering, procurement, and construction contractor
(EPC) manages the construction of the cabinet. 4. The Supplier
builds a secondary component for the cabinet. The trust
relationships between the organizations are not always mutual
and may change over time. The Owner wants the EPC to
produce a cabinet that satisfies local regulations and therefore
requires NOBO to certify the correct production. No mutually
accepted source of truth exists between the organizations and
each organization hosts its own data. This may give rise to an
inconsistent view of the business process by each organization,
and it does not facilitate the audit through notary organizations
such as governmental or certification authorities.

A distributed solution is required to implement a mutually
accepted source of truth with an immutable ledger while
maintaining access control over confidential data assets and

workflows. It must be hosted by multiple organizations -
multilateral - with shared responsibility and control over work-
flows and data assets - distributed - between the responsible
organizations. The immutable audit log supported by the
decentralized consensus algorithm increases the credibility and
efficiency of audits by supervisory bodies. This means some
organizations observe the workflow while others participate in
workflows. Each organization requires the same view of the
state of the workflow, which is why a transparent single source
of truth is required.

Consequently, blockchain seems to be an optimal fit for such
use cases as it eliminates the need for a trusted third party for
orchestrating and enforcing workflows between organizations. It
enables trusted transactions among untrusted participants in a
network. Thus, blockchain became one the emerging technology
to implement and enforce distributed workflow enforcement
use cases [2], [3]. Smart contracts are distributed programs
used to orchestrate the distributed multilateral workflow which
modify the blockchain state. In a traditional public blockchain
the decentralized trust is established when most of the parties
involved in the blockchain network validate a smart contract’s
logic which we refer to as computational integrity. This means,
most of the parties re-execute or should be able to reproduce
the results i.e., they should have access to the input data as
well as the program implementing the smart contract logic.
Thus, the computational integrity of smart contracts is enforced
without a central authority through a consensus protocol which
ensures that only valid updates are made to the blockchain.

This goes against the requirements of many enterprises use
cases which demand some level of confidentiality e.g., the
Owner does not want to reveal the sensitive input information
such as pricing data, or with which organizations it cooperates
with, or even the smart contract program logic itself. In
conclusion, multiple organizations need to collaborate and
therefore need to share data assets and confidential data
assets on a need-to-know basis with each other. Additionally,
they must ensure that neither organization can tamper with
audit logs successfully without others detecting misuse. These
problems can be solved by a permissioned or private blockchain
(like HLF). The participants of HLF network can select: a)
the organizations they share the smart contract logic with
(HLF chaincode lifecycle), b) with whom they share metadata
(HLF channels), c) within a channel with whom they share
sensitive data (HLF private data collection (PDC)), d) finally,
which organizations must validate the smart contracts (HLF
endorsement policies).

For more detail, we recommend referring to the respective
blockchain documentation like HLF [4]. Even though, a con-
crete blockchain product may come with these features to solve
the confidentiality concerns, how to use them, when to use them

and what security implications they have are a concern for
blockchain architects. In this paper, we explore these features
in detail and apply them to solve the enterprise fabrication use
case. On this aspect, this paper contributes:
1) A general, formal approach is presented to describe a
distributed multilateral workflow.
2) A methodology that uses the formal approach and produces
a secure permissioned blockchain (in our example HLF) archi-
tecture as a solution.
3) Attacker models are defined, and the solution is evaluated
against potential attacks.
4) Countermeasures against the defined attacks and their per-
formance impact is measured (using the Hyperledger Caliper
tool).
5) By means of a real-life use case this approach is demon-
strated and evaluated.
The rest of the paper is organized as follows: Section II is the
main contribution. It includes the definition of the requirements
as a novel formal description, and the conversion of that input
into a solution. This is done for general workflows and a
concrete use case - the fabrication stage. Section III introduces
the attacker model, applies it to the solution and defines
countermeasures. Section IV evaluates the performance impact
of the countermeasures. Section V highlights related research
and Section VI summarizes all findings and opens questions to
be addressed in future works.

II. Proposed Solution
The process of constructing a solution based on a use

case requires structured requirements as inputs. This input is
defined in Section II-A. The Hyperledger Fabric (HLF) related
components and terms used are described in Section II-B.
Then, the approach is defined and shown for a general workflow
in Section II-C. Next, the example use case - fabrication stage
- is introduced in Section II-D and the solution for it is created
in Section II-E. This demonstrates that the process can be
done programmatically by a software component for most
architectural decisions.

A. Formal Description
A process to create blockchain solutions for distributed

multilateral workflows needs structured requirements about
confidentiality and access control. We propose a formal de-
scription to structure these requirements. Prior descriptions for
multilateral workflows such as a coloured petri net (CPN) [5] or
yet another workflow language (YAWL) [6] don’t model our use
case appropriately well. The presented description encompasses
all necessary data and serves as the only input needed to
create solutions. In general, a multilateral distributed workflow
consists of the following: O is the set of all organizations that
participate in the workflow, and |O| = n is the number of orga-
nizations. A multilateral distributed workflow is a collection of
one or more sub workflows wi ∈ W where W is the set of all sub
workflows. Each sub workflow wi has a set of properties wi =
(Pi, OBSi, Si, Di, Ci). Pi ⊆ O is the set of organizations that
participate in the sub workflow called participants. OBSi ⊆ O
is the set of observing organizations called observers. They
are allowed to observe the non confidential data assets and
the transactions (metadata) of the sub workflow. Pi ⊆ OBSi

every participant is also an observer. Si is the set of workflow
steps sij ∈ Si ∈ wi. Each step sij ∈ Si can be executed by

one or a group of participants called the EXECUTORSsij .
Di and Ci are the sets of data assets of the sub workflow wi.
The data assets can be classified into either confidential data
assets cij ∈ Ci or not confidential data assets dij ∈ Di. Every
data asset is created by one or a group of organizations called
writers and is sent to one or a group of organizations called
readers. A non-confidential data dij asset has a specific set of
WRITERSij ⊆ Pi and READERSij = OBSi. A confidential
data asset cij has a specific set of WRITERSij ⊆ Pi and a
specific set of READERSij ⊆ Pi. Also, every writer of a data
asset must also be a reader. Importantly, reader is a role that
an observer can have to read a specific data asset.

B. HLF specific terms

Hyperledger Fabric (HLF) is a private permissioned
blockchain product which we utilize. In HLF smart contracts
are executed in a different transaction flow than in other
blockchains. This transaction flow is called execute-order-
validate. The process starts with the execute phase: Clients,
third party programs interacting with the blockchain, are
proposing transactions to peers. Peers are the nodes which
execute smart contracts and are run by different organizations.
Peers execute the proposed smart contract and return the
signed result of the execution to the client called the endorse-
ment response. The client sends the packaged responses to
the ordering service, called transaction message. The ordering
service may consist of multiple nodes called the ordering
service nodes (OSN). The service collects multiple transaction
messages, packs them into blocks, and sends these blocks
to the peers. This is the ordering phase. Peers validate the
transactions in the blocks and apply the changes from the
transactions to their local copy of the so called world state.
This is the validating phase. The world state is a versioned
key value store. Multiple smart contracts can be deployed as a
single chaincode. Chaincodes are basically the entity which is
deployed onto channels and installed on peers. Smart contracts
are essentially only the business logic. For more details we refer
to [4].

C. General Solution

1) wi: Each sub workflow is implemented as a single smart
contract. The endorsement policy requires all participants Pi

signatures.
2) OBSi: Each distinct set of observers OBS requires the
creation of a new channel to separate the sets of observers from
each other. The sub workflows’ smart contracts are deployed
to the channels where the set of observers of the sub workflow
matches the members of the channel. Henceforth, channel
observers, channel members and observers of the sub workflow
and smart contracts can be used interchangeably.
3) Pi: Each participant p of the sub workflow wi has the
corresponding smart contract installed on its peers.
4) Si: Each workflow step s of the sub workflow wi is imple-
mented with its own smart contract function.
5) EXECUTORSsij : The smart contract functions which
realize a step sij must enforce that they are only executed
by the authorized set of EXECUTORSsij . The certificate of
the transactor which is a part of the transaction proposal is
used for this purpose [7].

6) Writers: The smart contract functions must authorize the
transactors to write data assets. It must check if the transactor
is a writer of that specific data asset.
7) dij : Normal data assets are stored on the world state by the
smart contract of the respective sub workflow.
8) cij : Confidential data assets are stored in a private data
collection (PDC). These PDCs can only be stored by the set of
READERScij of the confidential data asset. This is enforced
through the collection storage policy. The write access is
enforced like step 6. The resulting collection level endorsement
policy is the set to READERScij .
The ordering service in HLF uses the RAFT [8] consensus
algorithm [7] which is crash fault tolerant (CFT). Currently,
HLF does not support a Byzantine-fault tolerant (BFT) [9]
consensus algorithm. MirBFT [10] and FastBFT [11] are in
development and might be used in the future. Raft does
not provide protection against a malicious organization and
the general solution will change whenever HLF implements
a BFT consensus algorithm. Hence, spreading governance of
the RAFT ordering service distributes the responsibility for
its availability. Most nodes need to function correctly to order
new blocks. An ordering service nodes (OSN) that takes part
in ordering process is called a consenter. Given the number of
consenters N . Then the ordering service is not functional only
if the number of simultaneous consenter failures is greater than
F (N).

F (N) =

{
N/2 if N is odd
(N/2)− 1 if N is even

An odd number of consenters is better because F (4) = 4/2 −
1 = F (3) = 3/2 = 1. Meaning the fourth consenter results
in an additional consenter which potentially might become
unavailable. An odd number of consenters is preferred for all
created channels. It is important to only allow organizations
that are at least observers to run an OSN because it gives
them read access to data assets and metadata of private data
collections PDC.

D. An example use case: Fabrication Stage
To illustrate we summarize a use case of a concrete workflow

between 4 organizations. For further details we refer to [12].
There are 4 organizations: The Owner orders a cabinet to
operate in a power plant. NOBO certifies the cabinet’s correct
production and conformity. EPC manages construction of
the cabinet. The Supplier builds a secondary component, a
pressure sensor in this case. The resulting set of organizations
is O ={Owner, NOBO, EPC, Supplier} and the number
of organizations is n = |O| = 4. In short, the workflow
orchestrates the ordering, construction, and certification of a
cabinet. The different parts and used data assets are illustrated
in Fig. 1 for each sub workflow. For instance, the audit_report
contains the certification of NOBO of the cabinet is a part
of w1 and w3. Both sub workflows work on the same data
asset but they each govern over their own copy independently.
The endorsement policies and the implementation of cross-
chaincode invocations require this. Section II-E will discuss the
reasons in detail. Each workflow step sij has a set of authorized
EXECUTORSsij , the mapping of workflow steps to executors
is defined in [12]. For instance, the step order_cabinet has the
executor Owner. Table I defines the roles each organization
holds for each sub workflow.

Fabrication Stage Use Case

w1 Cabinet Order
Cabinet Fact Sheet

Cabinet Design Specification
Owner Acceptance Sheet

Cabinet Offer

w2 Sensor Order
Sensor Offer

Sensor Specification
Sensor Fact Sheet

EPC Acceptance Sheet

w3 Cabinet Evaluation
Cabinet Fact Sheet

Cabinet Design Specification
Audit Report

EPCNOBO S1 Owner

Fig. 1: Use case diagram for the fabrication stage showing the
3 separate sub workflows. The participants and data assets
according to Section II-A are depicted.

Workflows
Org. EPC NOBO Owner Supplier

w1 Cabinet Order OBS|P OBS OBS|P
w2 Sensor Order OBS|P OBS OBS|P
w3 Cabinet Evaluation OBS|P OBS|P OBS

TABLE I: (Obs) = observers, (P) = participants. Two distinct
sets of observers: First set: EPC, NOBO, and Owner. Second
set: EPC, NOBO, and Supplier.

Write and read access are defined for each data asset and
confidential data asset. For instance, an offer for the cabinet
is sent by the Owner to the EPC, in the send_cabinet_offer
step. The contents are confidential as they contain information
regarding price and delivery date. Therefore, this data asset is
considered confidential and has the readers Owner and EPC.
The Owner is the writer because it makes the offer.

E. Solution for the fabrication stage use case
The general approach is now applied to the example use

case - fabrication stage. The resulting design is called default
configuration.
1) The three sub workflows w1, w2, w3 are implemented as
three smart contracts each in their own chaincode. The sep-
aration into chaincodes isolates the world states of each sub
workflow. These smart contracts are called Cabinet contract,
Sensor contract, and Evaluation contract. The contracts have
their own endorsement policies, shown in Table. II. These
endorsement policies enforce that a peer each from every sub
workflow participant Pi ∈ wi must endorse the transactions of
the implementing smart contract. For instance, w1 Cabinet Or-
der is implemented by the Cabinet contract. The participants
of w1 are EPC and Owner. The endorsement policy requires
an endorsement each from their peers.

Contract Sub Workflow Endorsement Policies
Cabinet w1 AND(”EPC.peer”, ”Owner.peer”)
Sensor w2 AND(”EPC.peer”, ”S1.peer”)
Evaluation w3 AND(”EPC.peer”, ”NOBO.peer”)

TABLE II: Endorsement policies of the three smart contracts.
2) There are two distinct sets of observers OBS as stated
in Table I. OBS1 = OBS3 this set requires the creation of
the Cabinet channel. OBS2 requires the second channel, the
Sensor channel. The channel participation is illustrated by
Table III. The Cabinet and Evaluation contracts are deployed
on the Cabinet channel. The Sensor contract are deployed
on the Sensor channel. The smart contract deployment is
shown by Table IV. The chaincode lifecycle [12] enables the
independent deployment of chaincodes by multiple subsets of
channel members. This enables confidentiality of sub workflows
while enabling observers to audit and verify the results of these
workflows. For instance, the Lifecycle Endorsement policy of
the Cabinet channel allows the deployment by two subsets. The

Channel
Member EPC Owner NOBO Supplier

Cabinet channel ✓ ✓ ✓
Sensor channel ✓ ✓ ✓

TABLE III: Mapping of channels to the channel members.

Channel
Contract Cabinet Sensor Evaluation

Cabinet channel ✓ ✓
Sensor channel ✓

TABLE IV: Mapping of channels to deployed smart contracts.

subset of EPC and Owner cooperate to deploy the Cabinet
contract. The subset of EPC and NOBO cooperate to deploy
the Evaluation contract. Hence, the Evaluation and Cabinet
contract can be approved and deployed individually by their
participants. In brief, the channel separation enables that
Owner and Supplier do not know of each other’s transaction
with the EPC. This possibility is important, because a forced
disclosure of business relations can lead to the EPC not wanting
to participate.
3) Chaincode installations are determined by the organizations
that are participants pij ∈ Pi of the sub workflow wi. For
instance, the Cabinet contract is deployed on peers of the EPC
and Owner because both are participants of w1.
4) The set of workflow steps sij ∈ Si of each sub workflows are
implemented as functions of the smart contracts. For instance,
the Cabinet contract has a function send_cabinet_offer. It is
used by the EPC to send the cabinet_offer to the Owner. The
complete list of steps can be found in [12].
5) Every workflow step sij has a set of executors
EXECUTORSsij which define who can execute which trans-
action. For instance, the send_cabinet_offer function has
the executor EPC. Hence, upon invoking the function the
signature of the transaction proposal is checked against the
root certificate of the EPC organization. The root certificate
is stored in the membership service provider definition that
is contained in the channel configuration. Only upon correct
validation does the peer endorse the transaction.
6) The set of writers/readers are implemented like the ex-
ecutors. Workflow steps writing data assets check in the
authorization whether the transactor is also a writer/reader
of the data assets. For instance, get_cabinet_offer function
checks whether the transactor is the EPC or the Owner,
because both are readers.
7) Non confidential data assets Di of a sub workflow wi are
stored on the world state. For instance, the audit_report which
represents the certification of NOBO is such a data asset. The
audit report is used in two sub workflows w1 and w3 which
leads to redundancies. Both contracts Cabinet and Evaluation
need to store the asset separately. HLF presents opportunities
to remedy this redundancy and let chaincodes call each other,
called cross-chaincode invocations [7]. Using cross-chaincode
invocation assets of chaincode A can be accessed by chaincode
B. But both chaincodes (A and B) must be installed on the
same peer. But we want to make sub workflows available on a
need-to-know basis. And we cannot deploy them independent
from each other if the need to call each other using cross-
chaincode invocation. It is also possible to combine multiple
smart contracts into a single chaincode to enable each contract
to directly access the data assets of the other contract. This
means we need to deploy both smart contracts at the same

P1
NOBO

P2
Owner

P3
EPC

P4
Sup.

L2
Cabinet
channel

L1

Sensor
Contract

 Cabinet
Contract

Eval.
Contract

L2

L1L1L2

2 1

Sensor
channel

Sensor
Contract

Ledger

Smart contract

Peer node

Channel

Smart contract
is deployed on

the channel
Peer P is

connected to
channel 1

L

P

C

Cabinet
Contract

Sensor
Contract

 Eval.
Contract

 Cabinet
Contract

Eval.
Contract

C

C1

P
1

2

2

11

Fig. 2: HLF deployment diagram. Sup=Supplier,
Eval=Evaluation.
time. Similarly, deploying multiple smart contracts into one
chaincode also removes our ability to deploy them separately.
Redundancies are utilized to decouple the smart contracts.
8) Two sub workflows contain confidential data assets
w1 and w2. These assets are cabinet_offer and pres-
sure_sensor_offer. The cabinet_offer, must only be shared
with its READERSccabinet_offer EPC and Owner. Hence, a
PDC is defined with the name PDC1 between both or-
ganizations and cabinet_offer is stored there. Now, NOBO
cannot read the contents of cabinet_offer even though it
is part of the Cabinet channel. But NOBO can verify the
integrity of the cabinet_offer with the hash on the channel’s
ledger if the Owner/EPC provide the asset. Likewise, pres-
sure_sensor_offer is shared between the EPC and the Supplier
and is stored in another PDC with the name PDC2.

Private Data Collection Endorsement Policies
PDC1 AND(”EPC.peer”, ”Owner.peer”)
PDC2 AND(”EPC.peer”, ”S1.peer”)

TABLE V: The collection level endorsement policies define
organizations that endorse transactions with private data.
Whenever the PDC1 is written in a transaction then the EPC’s
and Owner’s peer need to endorse.
In summary, Fig. 2 shows the condensed overview of all
channels, smart contracts, peers, organizations, and chaincode
deployment. The configuration of the ordering service of the
Cabinet channel depends on the channel members Owner,
EPC, and NOBO. Each organization contributes one consenter,
which sums up to a total number of 3 consenters, a set
which is an uneven amount. The modification of the channel
configuration parameters is governed by the so-called modifica-
tion policies. These values which concern all channel members
are governed such that an admin of each member must
approve changes. The resulting policy is AND(EPC.admin,
NOBO.admin, Owner.admin). Fig. 3 illustrates the ordering
service and the governing organizations of the Cabinet channel.
The Sensor channel can be set up accordingly. The consenters
are run by the EPC, the Supplier, and NOBO. The modifica-
tion policy of the channel configuration is AND(EPC.admin,
Supplier.admin).

III. Attacker Model
Multiple different attacks are possible on the presented

solution in Section II. Yet, we propose a novel attacker model
that takes the blockchain network architecture into account.
We assume that the attack controls components within the
blockchain network. The model shows the impact of the
architectural decisions. HLF the components that are valuable
for the attacker are client, orderer, certificate authority, and
peer. A brief description of the role of these components is

Ordering Service

O1
EPC

Cabinet channel

1

CC1

EPC NOBOOwner

P3
EPC

P2
Owner

P1
NOBO

111

O2
Owner

O3
NOBO

Peer node

Ordering
Service Node

Channel

The channel
configuration
for channel 1

Peer P is
connected to

channel 1

P

O

P
1

CC1

Fig. 3: Configuration for the ordering service and governing
organizations for the Cabinet channel.

given in Section I, more details in [12]. An attacker controlling
a client can query and submit transactions which is limited
and therefore not discussed. A controlled consenter of the
ordering service can access the ledger and take an active part
in the consensus algorithm. However, the consensus protocol is
RAFT which is crash fault tolerant (CFT) and can therefore
not withstand malicious actors. This kind of attack requires a
Byzantine-fault tolerant (BFT) consensus algorithm which is
so far not supported by HLF [13]. Compromises of certificate
authorities are called Identity Provider Compromise and are
already investigated in [14].

An attacker controlling peers can endorse transactions,
has access to the smart contract code, the ledger, and the
private data collections PDC, can refuse to execute transaction
proposals, or send malicious proposal responses. We call this
attacker type the Peer Attacker. The Peer Attacker can
communicate between the malicious peers that they control.
For instance, they can orchestrate 2 peers to send malicious
proposal responses. The endorsed transaction is not necessarily
the result of a smart contract execution and arbitrary changes
can be made to the world state and private data collections
(PDC) as a result. This paper considers 2 scenarios: Blocking
of smart contracts and manipulation of the smart contract
execution.

A. Evaluation of the Peer Attacker
The Peer Attackers influence depends on the amount and

kind of peers under its control. This influence is evaluated
for both scenarios in two separate tables. Table VI illustrates
the influence over the blocking of smart contracts. The left
side of the tables shows which peers the attacker controls. The
right side shows if the attacker can successfully block a smart
contract. In scenarios 1, 3, and 4 the Peer Attacker can block
one contract at a time and only one sub workflow is affected.
In scenario 2, the EPC’s peer is controlled, and all contracts
can be blocked. The EPC’s peer is a single point of failure
regarding the blocking of smart contracts by the Peer Attacker.
The influence of the Peer Attacker is the same in scenario 2
and 9 even though the total number of controlled peers is
different. Only the EPC’s peer is controlled in scenario 2 and
all other peers are controlled in scenario 9. In brief, controlling
the EPC’s peer is as valuable as controlling all other peers in
this scenario.

Table VII shows the influence over the manipulation of smart
contracts. The right side shows if the attacker can endorse
arbitrary transactions for specific contracts with its peers
such that the endorsement policy is satisfied. For instance,
the Cabinet contract requires two endorsements, one from

TABLE VI: Scenario: Blocking of smart contracts.
Nr. Controlled peers Blocked contracts

NOBO EPC Owner Supplier Cabinet Sensor Evaluation
1 ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓
4 ✓ ✓
5 ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓

TABLE VII: Scenario: Manipulation of smart contracts.
Nr. Controlled peers Contracts manipulated

NOBO EPC Owner Supplier Cabinet Sensor Evaluation
1 ✓
2 ✓
3 ✓
4 ✓
5 ✓ ✓ ✓
6 ✓ ✓ ✓
7 ✓ ✓ ✓
8 ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓

the EPC’s peer and one from the Owner’s peer. The Peer
Attacker that controls both peers can send 2 manipulated
proposal responses which can produce arbitrary results. Hence,
the attacker can manipulate the Cabinet contract in scenario
6 and 9. In the scenarios 1 to 4 the Peer Attacker controls one
peer each and this does not enable the attacker to manipulate
any smart contracts because a minimum of two endorsements
is required. In scenarios 5, 6, and 7 two peers are controlled
at a time. The set of compromised peers contains the EPC’s
peer and another organization’s peer. All these scenarios lead
to exactly one smart contract which can be manipulated.
Scenario 8 shows that if all peers are compromised, but the
EPC remains unaffected then no contract can be manipulated.
The evaluation of the Peer Attacker shows the interaction of

endorsement policies, chaincode deployment, and number of
peers:
1) Blocked contracts: Table VI shows that even attacks on a
single peer can lead blocked smart contracts. We recommend
multiple peers for each organization to avoid a single point
of failure. For instance, if the EPC has 6 peers authorized
to endorse the Cabinet contract, then the attacker needs to
compromise all peers to block the execution. Hence, the more
peers’ organizations host the harder it is for the Peer Attacker
to block smart contracts.
2) Manipulated contracts: Table VII shows that if the set of
peers attacked is congruent with the endorsement policy of a
smart contract, then the attacker can manipulate that smart
contract. Consequently, endorsement policies that require more
peers to endorse lead to smart contracts which are harder
to manipulate, because the Peer Attacker must compromise
more peers to manipulate the smart contact. The applied
endorsement policy can change when a PDC is used which
must be considered. Basically, each possible endorsement policy
must be analysed separately. If this endorsement policy is less
restrictive than the normal smart contract endorsement policy
than it may be easier for the Peer Attacker to manipulate the
smart contract.

B. Countermeasures for the Peer Attacker
The practical side of the countermeasures is investigated

first. Then a model is presented in Section III-C that can
estimate the chance of these attacks based on a blockchain
network architecture. The results are then applied and the
secured configuration for the fabrication stage’s solution is
created in Section III-D.

When adding more peers, the following must be considered:
Adding more peers for an organization helps to protect against
the blocking of smart contracts. The attack surface for at-
tackers looking to manipulate smart contracts also increases
with the addition of new peers. More peers are harder to keep
in synch and a less homogeneous view of the blockchain may
be the result. Hence, the chance of multi-version concurrency
check (MVCC) collisions rises. These collisions occur if the
endorsement response is computed on an outdated version of
the world state. The resulting transaction will then fail the
validation by other peers if a value it relied on has already
been overwritten.

When an increasing number of endorsements is required, the
following must be considered: Requiring more endorsements
increases the effort for the Peer Attacker when trying to
manipulate smart contracts. Increasing the number of required
endorsements also increases the attack surface for the attacker
looking to block smart contracts. Increasing the number of
endorsements required for smart contracts is not trivial. The
endorsements are defined according to the roles of each orga-
nization in the respective workflows. Hence, the endorsement
policy must require more endorsements without involving more
actual organizations. The following possibilities exist in HLF:
1) Adding another channel member: It is possible to add
organization to the endorsement policies that are only observers
of the workflow. This violates the need-to-know requirement
about smart contracts. Hence, this cannot be employed.
2) Using the organisational unit (OU): In HLF each organiza-
tion can define so called organisational unit (OU). It is possible
to give each of these OU’s different permissions. For instance,
the default implementation knows 4 different organization
units: client, admin, orderer, and peer. The membership service
provider (MSP) maps certificates (default) to organizations and
OUs [4]. Their name suggests also what they are intended
to be used for. The peer OU is normally used to define
endorsement policies, and the clients or admins cannot create
endorsements. It is possible use these within an endorsement
policy: AND(EPC.peer, EPC.client, EPC.admin, EPC.orderer)
A better way would be to define new organization units
like: peer1, peer2 etc. Yet this requires a change the MSP
implementation and is therefore out of scope.
3) Using multiple MSPs for one organization: This option re-
quires multiple MSP entries for one organization in the channel
configuration. This option is supported by the current codebase
and is therefore chosen. For instance, the Cabinet contract
could require 4 endorsements for sufficient protection. Then the
endorsement policy can be defined as follows: AND(EPC1.peer,
EPC2.peer, Owner1.peer, Owner2.peer).

C. Probability Model
We are modelling the probability for each attack scenario

depending on the blockchain network architecture. The model
has the following inputs:
1) N: Total number of organizations that need to endorse a
smart contract.
2) m: Number of endorsing peers each organizations hosts.
Every organization hosts the same number of peers in the
model to retain usability and reduce complexity.
3) pc: The probability that a peer is compromised by an
attacker at any time. This probability is static and independent

Nr. of Peers per Org m
12345

Nr. of Endorsements N

1
2

3
4

5

Probability

0.00

0.05

0.10

0.15

0.20

(2,3)
(2,4)(3,4)(4,4)

Fig. 4: The acceptable solutions are calculated for pc = 0.05,
and a maximum probability for blocked or manipulated smart
contracts of MAXpb = MAXpm = 0.001. The purple surface
shows the behavior of pm and the grey surface the behavior
of pb. The green dots with tuples illustrate the configurations
which satisfy the security requirements. The tuple (2, 3) defines
that a configuration with 2 peers per organization and 3
endorsements satisfies the requirements.

of the organization and the number of peers. The assumption
is that every organization protects its peers in the same way.
4) MAXpb : Security requirement defining the maximum ac-
ceptable probability for a blocked smart contract.
5) MAXpm : Security requirement defining the maximum ac-
ceptable probability for a manipulated smart contract.

The probabilities can be calculated as follows: The prob-
ability that a smart contract can be blocked is called pb =
1− (1−pmc)N . Hence, the following must hold true: MAXpb >
1 − (1 − pmc)N . The probability that a smart contract can be
manipulated is called pm = (1 − (1 − pc)

m)N . The following
must hold true: MAXpm > (1−(1−pc)

m)N . Both requirements
combined and reduced results in the following statement which
must hold true for both security requirements to be satisfied:
ln(MAXpm)

ln(1−(1−pmc)
< N < ln(1−MAXpb)

ln(1−pmc)

The model can now be applied to the default configuration
of the fabrication stage. The security requirements we set up
are:
1) MAXpb : The maximum acceptable probability for a blocked
contract is MAXpb = 0.001
2) MAXpm : The maximum acceptable probability for a ma-
nipulated contract is MAXpm = 0.001

The requirements MAXpm and MAXpb can be a part of a
service-level agreement (SLA) like e.g., 99.999% availability.
The value for pc must be set based on past experiences or
comparable deployments. In this use case we assume that the
probability for any one peer to be controlled by the attacker to
be pc = 0.05. The calculation that is visualized in Fig. 4. The
figure illustrates, that increasing m, the number of peers per
organization, has a positive effect on pb and a negative effect on
pm. Also, it shows that increasing the number of endorsements
N has a negative effect on pb and a positive on pm. A balance
must be struck to satisfy the security requirements. It shows
that m = 2 peers and N = 3 endorsements is a secure
configuration. The example in Fig. 4 shows this because the
acceptable configurations are found where at a combination of
an increased m and increased N and not at their respective
extreme values.
D. Secured configuration

To be compliant with the security recommendations calcu-
lated in the previous section the blockchain network architec-
ture must change. The default solution uses 2 endorsements

Contract/PDC Endorsement Policies
Cabinet AND(”EPC1.peer”, ”Owner.peer”, ”EPC2.peer”)
PDC1 AND(”EPC1.peer”, ”Owner.peer”, ”EPC2.peer”)
Sensor AND(”EPC1.peer”, ”S1.peer”, ”EPC2.peer”)
PDC2 AND(”EPC1.peer”, ”S1.peer”, ”EPC2.peer”)
Evaluation AND(”EPC1.peer”, ”NOBO.peer”, ”EPC2.peer”)

TABLE VIII: Endorsement policies complying with security
recommendations.
and 1 peer per organization. The recommendation requires 3
endorsements and 2 peers for all smart contracts. Hence, each
organization must add 1 peer to their existing deployment.
Yet, adding another endorsement is less trivial because only
one organization needs to add another MSP. For instance, the
Evaluation contract is currently endorsed by the EPC’s and
NOBO’s peer. To reach a total amount of 3 endorsements,
either NOBO or EPC must add another MSP to the channel.
Because the EPC is part of every contract its efficient to
choose the EPC add another MSP for the third endorsement
to all other contracts. This keeps the needed number of nodes
small. The resulting endorsement policies are shown in Table
VIII. The newly added MSP EPC2 must also host 2 peers
and have the same contracts deployed to at so it matches
the configuration of EPC1’s peers. It may happen that all
contracts themselves are compliant with the recommendations
however the private data collection (PDC) may not be. Then
organizations in the collection level endorsement policy of the
PDC must add further MSPs to comply with the security
recommendation.

IV. Performance Evaluation
The performance evaluation goals are twofold. First, assert

that the performance is sufficient for the use case. A study
from [15] concluded the maximum wait times users are willing
to tolerate for web applications to be about two seconds.
Hence, the requirement to transaction latency is 2 seconds. For
our use case a transaction throughput of more than 20 TPS
is sufficient. Second, the performance impact of the applied
security measures in Section III-B will be estimated. The
default configuration (Section II) and the secured configuration
(Section III-D) were compared regarding transaction through-
put and transaction latency. A complete impact modelling
of the measures is out of scope as there is ongoing work on
modelling the latency of HLF depending on the block-size
and transaction throughput [16] and on performance modelling
using stochastic reward networks [17].

Setup: The experiment used HLFs long-term stable (LTS)
version 2.2 using Hyperledger Caliper, a blockchain bench-
marking tool [18]. Two nodes in 2 regions of the world were
used to create realistic latency. One in Ohio (us-east AWS)
and one in Frankfurt (eu-central AWS). The number of nodes
stayed the same across the experiments to produce comparable
results. 2 nodes were chosen over 3 nodes because the default
configuration can only use 2 peers at a time. Hence, using
3 nodes would positively impact the results for the secured
configuration and positively skew the results in that direction.
The nodes had 4 GiB of RAM, 2 vCPUs with max 3.3 GHz,
25 GiB of storage and ran Ubuntu 20.04. The configuration
of the ordering service did not change between the setups,
one ordering service node (OSN) with the default RAFT
implementation was used. The ordering service created new
blocks after 2 seconds and after 10 transactions. The minimal
ordering service deployment reduces its performance impact
which is out of scope of the analysis. Once pBFT algorithms

readonly PDC Avg TPS (Min/Max) Avg LAT (Min/Max) in s
45.0 (36.8/52.9) 0.60 (0.15/2.5)

X 40.6 (33.5/47.7) 0.69 (0.26/2.8)
X 99.2 (91.7/109) 0.21 (0.01/0.46)
X X 99.1 (99.5/107) 0.21 (0.01/0.47)

TABLE IX: Benchmark result for the default configuration of
the fabrication stage.

readonly PDC Avg TPS (Min/Max) Avg LAT (Min/Max) in s
31.2 (21.3/42.7) 1.0 (0.17/3.4)

X 27.9 (20.2/35.5) 1.2 (0.26/3.44)
X 115 (109/124) 0.11 (0.01/0.56)
X X 115 (108/121) 0.12 (0.01/0.66)

TABLE X: Benchmark result for the secured configuration of
the fabrication stage.
can be used then the ordering services impact on performance
must also be considered. Each function was invoked 1000 times
at a fixed rate of 300 transactions per second (TPS) and the
benchmark was repeated 3 times.

Results: Each function is classified into using a private data
collection (PDC) or being readonly. Table IX shows the 4 cases
and lists throughput and latency for the default configuration
and Table X for the secured configuration.

The results of the secured configuration differ slightly from
the default configuration. The write transactions are signif-
icantly better for the default configuration for latency and
throughput. The additional endorsement requires additional
resources for the computation and communication of the
endorsement response and proposal. The transaction messages
size and block-size also increase due to the additional en-
dorsement required. These influences probably lead to the
decreased performance values of the secured configuration
regarding write transactions. The values for read transactions
improved slightly for both latency and throughput. There exists
an increased pool of possible peers to query data from in the
secured configuration. This might positively affect the read
transactions.

Conclusion: The application of countermeasures for the iden-
tified attack scenarios has a measurable impact on performance.
Performance of read only transactions increased and perfor-
mance of write transactions decreased irrespective of whether
a PDC was used or not. On average both configurations
produced a shorter wait time than 2 seconds which satisfies
our requirement. The throughput for any write transaction is
27.9 TPS on the lower end of the spectrum. Hence, the re-
sulting configurations both satisfies the requirements regarding
performance for the use case. Further, the performance can be
improved by adjusting the ordering service or by using more
performant nodes and networks.

V. Related Work
A framework to guide organizations which blockchain frame-

work to use was introduced in [19]. Business processes are
translated into smart contracts and used on blockchain to
orchestrate the processes in [20]. These approaches do not
consider confidentiality and the security implications of the
blockchain network architectures. The business process man-
agement systems reviewed in [21] showed that most systems fo-
cus on intra-organizational processes. Inter-organizational pro-
cesses are implemented, but each individual system remained
independent. Kasinathan et al. show that remote maintenance
in industrial use cases can be securely orchestrated using their
Workflow-Driven Security Framework (WDSF) which utilizes
petri nets and blockchain [3].

The security and recent advances of smart contracts was
surveyed in [22]. Attacks on the blockchain structure or peer

to peer communication are described in [23]. Potential risks
of Hyperledger Fabric (HLF) smart contracts are listed in [24]
and general vulnerabilities of HLF are surveyed in [14]. Yet,
our approach of analysing the blockchain network architecture
remains unaddressed.

VI. Conclusion and Future Work
The paper presented a formal approach towards achieving

a secure Hyperledger Fabric (HLF) deployment architecture
from orchestrating a cross-organizational use case with confi-
dentiality requirements. The paper demonstrated that trust in
the access control of data assets, confidentiality and integrity
of the workflow execution can be established between different
organizations using the solution presented in the paper. This
paper investigated an attacker model and presented a guideline
for applying countermeasures tailored to attack scenarios and
the requirements of the presented enterprise use case. The
performance evaluation showed that the secure architecture
solution provides the performance necessary for the enterprise
use case. Thus, this paper provides a generic methodology for
securing HLF blockchain architectures for cross-organizational
use cases which use PDCs, endorsement policies, and channels.
As future work, we plan to extend our work in the fol-
lowing ways: a) deployment: a fully automatic deployment
of multilateral business processes with confidential data and
workflows. To achieve that goal, we must have the capabilities
of automatically creating smart contracts directly from a given
formal description in HLF that can be extended to utilize
features such as the PDC, access control, and channels and
endorsement policies; b) security: extend the attacker models
and mitigations by detecting peer attacks such as blocking
and manipulating of smart contracts. In addition, the influence
of the peer attacker on the state of other smart contracts or
channels needs to be investigated further; c) performance: a
comprehensive performance analysis including the impact of
multiple peers, multiple organizations in endorsement policies
and their effect on the latency and throughput must be
conducted.

Acknowledgements
This research has been funded by the European Union’s

Horizon 2020 Research and Innovation program under grant
agreements No. 830929 and No. 871518. We wish to extend
special thanks to Ricarda Weber for her great reviews.

References
[1] S. Stahnke, K. Shumaiev, J. Cuéllar, and P. Kasinathan,

“Enforcing a cross-organizational workflow: An experience re-
port,” in Enterprise, Business-Process and Information Systems
Modeling. Springer International Publishing, 2020, pp. 85–98.

[2] K. R. Choo, A. Dehghantanha, and R. M. Parizi, Eds.,
Blockchain Cybersecurity, Trust and Privacy, ser. Advances
in Information Security. Springer, 2020, vol. 79. [Online].
Available: https://doi.org/10.1007/978-3-030-38181-3

[3] P. Kasinathan, D. Martintoni, B. Hofmann, V. Senni, and
M. Wimmer, “Secure remote maintenance via workflow-driven
security framework,” in 2021 IEEE International Conference on
Blockchain, 2021, pp. 29–37.

[4] Hyperledger, “Fabric,” https://hyperledger-
fabric.readthedocs.io/en/release-2.2/ - last accessed on March
2022.

[5] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri
nets and CPN tools for modelling and validation of concurrent
systems,” Int. J. Softw. Tools Technol. Transf., vol. 9, no. 3-4,
pp. 213–254, 2007.

[6] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL:
yet another workflow language,” Inf. Syst., vol. 30, no. 4, pp.
245–275, 2005.

[7] Hyperledger, “Fabric,” https://github.com/hyperledger/fabric-
last accessed on March 2022, 2022.

[8] D. Ongaro and J. K. Ousterhout, “In search of an understand-
able consensus algorithm,” in 2014 USENIX Annual Technical
Conference, USENIX ATC ’14, Philadelphia, PA, USA, June
19-20, 2014, G. Gibson and N. Zeldovich, Eds. USENIX
Association, 2014, pp. 305–319.

[9] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” in Concurrency: the Works of Leslie Lamport, 2019,
pp. 203–226.

[10] Hyperledger, “Mir-bft,” https://github.com/hyperledger-
labs/mirbft- last accessed on March 2022, 2022.

[11] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable byzan-
tine consensus via hardware-assisted secret sharing,” IEEE
Transactions on Computers, vol. 68, no. 01, pp. 139–151, jan
2019.

[12] B. Hofmann, “Privacy enhancing audit trail in hyperledger
blockchain,” masterthesis, Hochschule für angewandte Wis-
senschaften Kempten, 2021.

[13] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain
technology overview,” 2018-10-03 2018.

[14] B. Putz and G. Pernul, “Detecting blockchain security
threats,” in 2020 IEEE International Conference on Blockchain,
Blockchain 2020, Rhodes Island, Greece, November 2-6, 2020.
IEEE, 2020, pp. 313–320.

[15] F. F. Nah, “A study on tolerable waiting time: how long are
web users willing to wait?” Behav. Inf. Technol., vol. 23, no. 3,
pp. 153–163, 2004.

[16] X. Xu, G. Sun, L. Luo, H. Cao, H. Yu, and A. V. Vasilakos,
“Latency performance modeling and analysis for hyperledger
fabric blockchain network,” Inf. Process. Manag., vol. 58, no. 1,
p. 102436, 2021.

[17] H. Sukhwani, “Performance modeling & analysis of hyperledger
fabric (permissioned blockchain network),” Ph.D. dissertation,
Duke University, Durham, NC, USA, 2019.

[18] Hyperledger, “Caliper,” https://github.com/hyperledger/caliper-
last accessed on March 2022, 2022.

[19] N. Six, “Decision process for blockchain architectures based
on requirements,” in Proceedings of the Doctoral Consortium
Papers Presented at the 32nd International Conference on
Advanced Information Systems Engineering (CAiSE 2020),
Grenoble, France, June 08-12, 2020, ser. CEUR Workshop
Proceedings, O. Pastor and M. C. Cornax, Eds., vol. 2613.
CEUR-WS.org, 2020, pp. 53–61.

[20] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev,
and J. Mendling, “Untrusted business process monitoring and
execution using blockchain,” in Business Process Management
- 14th International Conference, BPM 2016, Rio de Janeiro,
Brazil, September 18-22, 2016. Proceedings, ser. Lecture Notes
in Computer Science, M. L. Rosa, P. Loos, and O. Pastor, Eds.,
vol. 9850. Springer, 2016, pp. 329–347.

[21] S. Pourmirza, S. Peters, R. M. Dijkman, and P. Grefen, “A
systematic literature review on the architecture of business
process management systems,” Inf. Syst., vol. 66, pp. 43–58,
2017.

[22] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract
security: A software lifecycle perspective,” IEEE Access, vol. 7,
pp. 150 184–150 202, 2019.

[23] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty,
D. Nyang, and D. Mohaisen, “Exploring the attack surface of
blockchain: A comprehensive survey,” IEEE Communications
Surveys Tutorials, vol. 22, no. 3, pp. 1977–2008, 2020.

[24] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Po-
tential risks of hyperledger fabric smart contracts,” in 2019
IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2019, pp. 1–10.

