
Master Thesis

in Computer Science

Privacy Enhancing Audit Trail in Hyperledger
Blockchain

submitted by

Hofmann Benedikt

Examiner: Prof. Nikolaus Steger
Supervisors: Dr. Prabhakaran Kasinathan

Dr. Martin Wimmer
Date: 10. June. 2021
Faculty: Informatik



ii

Abstract

The emergence of blockchain and smart contracts facilitate the cooperation between mul-
tiple organizations without the need for a trusted third party. Importantly, the partici-
pating businesses are not at the mercy of crashes, bugs, or malicious behavior of a trusted
third party if they use blockchain. In fact, the blockchain’s ledger acts as single source
of truth which organizations maintain collaboratively and use to orchestrate distributed
multilateral workflows. Importantly, it involves the sharing of confidential data between a
subset of the blockchain’s participants and the execution of confidential workflows where
individual tasks and the produced transactions are subjected to access control restric-
tions. However, the distributed shared ledger and the collaborative execution of smart
contracts conflict with the access control restrictions of confidential data assets and con-
fidential smart contracts. Consequently, different technologies and blockchain variants
that promise to solve this conflict are surveyed. The focus is the blockchain Hyperledger
Fabric (HLF). Then, a solution for a distributed multilateral workflow is designed and
implemented using this blockchain. Finally, the proposed design is evaluated based on de-
fined attacker models. The results show that HLF can be used to orchestrate distributed
multilateral workflows with confidential data assets, also pitfalls and best practices were
identified while developing the solution for the workflow.



iii

Kurzzusammenfassung

Das Aufkommen von Blockchains und Smart Contracts erleichtert die Zusammenarbeit
zwischen mehreren Organisationen, ohne dass eine vertrauenswürdige dritte Partei er-
forderlich ist. Wichtig ist, dass die teilnehmenden Unternehmen bei der Verwendung von
einer Blockchain nicht den Abstürzen, Fehlern oder dem bösartigem Verhalten einer ver-
trauenswürdigen dritten Partei ausgeliefert sind. Vielmehr fungieren die Einträger in der
Blockchain als "Single Source of Truth", die von den Unternehmen gemeinsam gepflegt
und zur Steuerung verteilter multilateraler Arbeitsabläufe genutzt werden. Wichtig dabei
ist, dass vertrauliche Daten zwischen einer Teilmenge der Blockchain-Teilnehmer geteilt
werden und, dass vertrauliche Arbeitsprozesse ausgeführt werden, bei denen einzelne
Aufgaben und die erzeugten Transaktionen Zugriffskontrollbeschränkungen unterliegen.
Der verteilten gemeinsamen Einträge in der Blockchain und die kollaborative Ausführung
von Smart Contracts stehen jedoch im Konflikt mit den Zugriffskontrollbeschränkungen
von vertraulichen Datenbeständen und vertraulichen Smart Contracts. Daher werden
verschiedene Technologien und Blockchain-Varianten untersucht, die versprechen, diesen
Konflikt zu lösen. Der Fokus liegt dabei auf der Blockchain Hyperledger Fabric (HLF).
Anschließend wird eine Lösung für einen verteilten multilateralen Arbeitsabläuf entworfen
und unter Verwendung dieser Blockchain implementiert. Auch wird das vorgeschlagene
Design anhand von definierten Angreifermodellen evaluiert. Die Ergebnisse zeigen, dass
HLF verwendet werden kann, um verteilte multilaterale Arbeitsabläufe mit vertraulichen
Datenbeständen zu steuern. Außerdem wurden Fallstricke und Best Practices bei der
Entwicklung der Lösung für den Arbeitsprozess identifiziert.



Contents

List of Figures vi

List of Tables viii

1. Introduction 1
1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Use Case 6
2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Fabrication Stage Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Background and Related Work 17
3.1. Distributed Ledger Technology . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3. Zero Knowledge Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4. Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5. Secure Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6. Trusted Execution Environments . . . . . . . . . . . . . . . . . . . . . . . 58

4. Proposed Design - Fabrication Stage 61
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2. Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3. Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4. Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5. Ordering and Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6. Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Implementation 73
5.1. Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2. Audit Trail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents v

6. Evaluation 82
6.1. Requirements Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2. Feature Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3. Research Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4. Attacker /Adversary Models . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7. Conclusion and Future Work 93

Appendices 105

A. Deployment Diagrams for the Fabrication Stage Concept 106

B. Sequence Diagrams for the Fabrication Stage Concept 108

C. Implementation 114

D. DVD Contents 120

Abbreviations 121



List of Figures

2.1. State diagram that illustrates the different stages of the construction and
certification of a power plant use case according to [76]. . . . . . . . . . . . 6

2.2. Use case diagram which depicts which stakeholders are participating in
which use case according to [76]. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Use case diagram for the fabrication stage use case which also shows which
data assets are associated with which sub use case. . . . . . . . . . . . . . 10

2.4. Sequence diagram of the fabrication stage’s workflow. . . . . . . . . . . . . 14

3.1. Generic chain of blocks according to [3, 80]. . . . . . . . . . . . . . . . . . 17
3.2. Generic block header according to [3, 80] . . . . . . . . . . . . . . . . . . . 18
3.3. Order execute architecture according to [11]. . . . . . . . . . . . . . . . . . 21
3.4. Illustration of a simplified blockchain network according to [3]. . . . . . . . 28
3.5. Relation between chaincode and smart contract according to [3]. . . . . . . 29
3.6. Example of a confidential smart contract. . . . . . . . . . . . . . . . . . . . 31
3.7. Illustration of the ledger according to [3]. . . . . . . . . . . . . . . . . . . . 31
3.8. Illustration of a simplified blockchain network with one channel [3]. . . . . 33
3.9. Hyperledger Fabric network for the endorsement policy example. . . . . . . 33
3.10. Endorsement examples for Tab. 3.2. . . . . . . . . . . . . . . . . . . . . . . 34
3.11. Execute order validate architecture according to [11]. . . . . . . . . . . . . 36
3.12. Sequence diagram of the transaction flow according to [3]. . . . . . . . . . 40
3.13. Illustration of the ledger when a private data collection is used [3]. . . . . . 44
3.14. Sequence diagram of the private data transaction flow according to [3]. . . 46
3.15. Simplified class diagram of structure of configurations [3]. . . . . . . . . . . 48
3.16. Illustration of an example for implicit meta and signature policies according

to [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1. Context diagram for the Workflow System. . . . . . . . . . . . . . . . . . . 61
4.2. Container diagram for the Workflow System. . . . . . . . . . . . . . . . . . 62
4.3. Component diagram for the Workflow System. . . . . . . . . . . . . . . . . 63
4.4. Class diagram for the smart contracts of the fabrication stage use case. . . 65
4.5. Channel diagram for the Workflow System. . . . . . . . . . . . . . . . . . . 67
4.6. Configuration for the ordering service for channel 1. . . . . . . . . . . . . . 70



List of Figures vii

4.7. Configuration for the ordering service for channel 2. . . . . . . . . . . . . . 71

5.1. Folder structure of the Cabinet Contract project. . . . . . . . . . . . . . . 74

6.1. Channel diagram for the Workflow System. . . . . . . . . . . . . . . . . . . 91

A.1. Deployment diagram for the EPC’s node. . . . . . . . . . . . . . . . . . . . 106
A.2. Deployment diagram for the nodes of the Owner, Supplier 1, Supplier 2

and NOBO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.1. Legend for the sequence diagrams. . . . . . . . . . . . . . . . . . . . . . . . 108
B.2. Sequence diagram for the Fabrication Stage use case. . . . . . . . . . . . . 109
B.3. Sequence diagram for the Fabrication Stage use case. . . . . . . . . . . . . 110
B.4. Sequence diagram for the Fabrication Stage use case. . . . . . . . . . . . . 111
B.5. Sequence diagram for the Fabrication Stage use case. . . . . . . . . . . . . 112
B.6. Sequence diagram for the Fabrication Stage use case. . . . . . . . . . . . . 113



List of Tables

1.1. Table of all research questions. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Access control list for the data assets of the fabrication stage use case. A
check mark in the R(W) column indicates read(write) access for the given
stakeholder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Functional requirements for data assets of the fabrication stage use case. . 15
2.3. Security and privacy requirements for the fabrication stage use case. . . . . 16

3.1. Programming languages that are used to create smart contracts [9, 78]. . . 20
3.2. Example endorsement policies for the small example. . . . . . . . . . . . . 34

4.1. Association of data assets and the responsible smart contracts. . . . . . . . 65
4.2. Channel participation matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3. Contract deployment matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4. Smart contract and private data collection (PDC) endorsement policies. . . 67
4.5. Sub workflows of the fabrication stage use case. Pi are the sub workflow

participants, Ci are the confidential data assets, Di are the data assets, and
ACi is the list of organizations that are allowed to access the data assets
and see the transactions of this sub workflow. . . . . . . . . . . . . . . . . 68

4.6. Fabrication stage use case transactions. The C stands for Cabinet, S for
Sensor, and E for Evaluation Contract. . . . . . . . . . . . . . . . . . . . . 72

5.1. Default access control list for the audit trail. . . . . . . . . . . . . . . . . . 81

6.1. Requirements mapping for the functional requirements for data assets of
the fabrication stage use case. (satisfied (SAT)) . . . . . . . . . . . . . . . 82

6.2. Requirements mapping for the security and privacy requirements for the
fabrication stage use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3. Mapping of HLF features and implementation concepts to the fabrication
stage’s requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4. Peer attacker’s ability to block transactions. . . . . . . . . . . . . . . . . . 88
6.5. Peer attacker’s ability to manipulate smart contracts. . . . . . . . . . . . . 89
6.6. Lists which transaction a Client Attacker can trigger with malicious intent. 89



List of Tables ix

6.7. Updated smart contract Endorsement Policies. . . . . . . . . . . . . . . . . 92



1. Introduction

Complex and highly specialized products sometimes lead to multilateral, distributed busi-
ness processes. Multilateral: not one but multiple organizations are involved in producing
goods or services. Distributed: The workflow is not orchestrated by a central trusted
authority. All organizations govern their own business processes. An example of a multi-
lateral and distributed workflow is the “construction and certification of a power plant”
use case. At least four organizations take part in the workflow. The Owner orders the
power plant, the EPC is the contractor that is responsible for managing the power plant
construction, NOBO is a certification body that certifies the correct execution of various
partial goals and documents, and a Supplier builds parts for the power plant. Importantly,
the amount of participants is small in comparison to a retail use case where one seller and
potentially millions of buyers exist. Moreover, the participating organizations might not
trust everyone that participates in the workflow equally. For example, the Owner does
not necessarily know the Supplier which results in no trust relationship between these
two organizations. Specifically, organizations have varying trust relationships with other
organizations that participate. The result is that the orchestration of such processes is
complex. In addition, each organization may have preferred communication mechanisms
such as e-mail, fax, or mail. Also, there might be no established mechanism which allows
all participants to verify the integrity and actuality of documents. Thus, each organi-
zation might have a different view of the workflow and its documents. For instance, an
offer for the power plant construction got sent per mail by the EPC but it has not arrived
because of errors in the distribution process. Hence, the Owner waits for the offer and
the EPC waits for an answer from the Owner. Thus, the process gets delayed or halts.
Moreover, paper documents can easily be manipulated. For instance, the Owner ordered
a power plant which can produce up to 10MW. However, the delivered power plant is only
capable of producing 9MW. Thus, the Owner starts a dispute that the delivered power
plant is insufficient. Then, the EPC changes his version of the offer to list the power
plant 9MW. The result is that the Owner and EPC have different views of the offer and
there is no fast and accessible solution to verify the integrity of the offer. For instance, a
notary might solve this for paper contracts. However, such entities are trusted third par-
ties which may be corrupt or incorrect which is a reason why a digital solution without a
trusted third party is desired which solves the issues of a centralized audit trail which can



1. Introduction 2

be manipulated by one participant without any other participants noticing it. Therefore,
this thesis takes a look at the blockchain technology which enables trusted transactions
among untrusted participants in a network [34]. Since Satoshi Nakamoto’s publication
[56] in 2008, blockchain has been a frequently discussed topic in securing data storage and
data transfer. The main component is the cryptographic-based distributed ledger that
enforces immutability and therefore allows for protections against tampering. The ledger
is made up of blocks which are linked to their predecessors with their hash. These blocks
are distributed to every participating node in the blockchain network which enables trans-
parency. The value of a trustless, decentralized, immutable ledger has been recognized by
many industries that are looking to apply these concepts to existing business processes
[77]. Each node can verify the validity of the chain with the references to the predeces-
sor and subsequently to the genesis block - the first block [76]. These properties make
blockchains an interesting choice for audit trails. The second breakthrough development
were smart contracts which were introduced by Nick Szabo [78]. Smart contracts enforce
computational integrity without a central authority. A consensus protocol ensures that
only valid updates are made to the ledger. These smart contracts can be used to orches-
trate distributed multilateral workflows. For instance, the workflow can be implemented
as a smart contract which changes the state of the blockchain according to the workflow’s
requirements. Thus, the state of the workflow and the necessary documents can be shared
and validated with smart contracts and the blockchain.
However, the workflow deals with various confidential data assets, for instance, the

offer for a specific part. These are documents which must only be accessible to a subset
of the participating organizations. Also, certain parts of the workflow are confidential as
well. For example, only a subset of the participants can know of the Suppliers and the
workflows which concern them. The result is that certain workflows must only be visibly
to a subset of the organizations. In short, multiple organizations want to collaborate
and need to share confidential data assets without using a trusted authority. In addition,
these organizations want to keep certain parts of their workflows confidential and produce
an audit trail which can be used to verify the correct workflow execution and which can
verify the integrity of exchanged data assets. However, smart contracts are often naively
re-executed on all nodes of the blockchain network to verify their correct execution [18].
Moreover, Re-execution is only possible if transaction inputs are available to validating
nodes. Therefore, this accessibility result in a lack of confidentiality and privacy thus
restricting the scope of applications that use smart contracts and blockchains [83].
This conflict between an immutable shared ledger that is visible to all participants and

the required confidentiality of data assets and workflows of the aforementioned use case



1. Introduction 3

is the central focus of this thesis. Further, a solution for the use case is to be designed
using the HLF blockchain.

1.1. Problem Statement

The multilateral distributed workflow of the “construction and certification of a power
plant” is to be implemented with the HLF blockchain. Importantly, the workflow includes
confidential data assets and workflows. Moreover, if data assets of the workflow is dis-
tributed through a blockchain which is shared among all participants and the workflow is
implemented with smart contracts that are collaboratively executed then it is apparent
that the confidentiality of data assets and workflows conflicts with the shared nature of
blockchain. Thus, this conflict is the main challenge of this thesis. Further, the execution
of a multilateral distributed workflow must produce an audit trail which can be used to
verify the correct execution of the workflow and which can verify the integrity of data
assets. However, this privacy enhancing audit trail must not conflict with the confiden-
tiality requirements of the data assets and workflows. Thus, the goal of the thesis it to
design, implement and evaluate a solution for this use case. Moreover, technologies to
implement a multilateral workflow are identified.

1.1.1. Research Questions

The thesis attempts to answer the following research questions:

Research Questions (RQ)
RQ1: What technologies can be used to implement multilateral distributed workflows

that work with confidential data assets and workflows?
RQ2: What are important design choices when designing a solution for multilateral

distributed workflows when using HLF?

Table 1.1.: Table of all research questions.

1.2. Scope

The scope of the thesis is based on the requirements analysis of Chap. 2 and the research
questions that are defined in Sec. 1.1. In brief, a solution for the distributed multilateral
workflow “construction and certification of a power plant” using the Hyperledger Fabric
blockchain will be created. The following points are considered withing the scope of the
thesis:



1. Introduction 4

• Formulating a succinct representative use case: Create a use case based on the works
of Stahnke [76], Kasinathan, and Wimmer [70, 71] that focuses on identifying con-
fidential data assets and confidential workflows via a commonly agreed distributed
multilateral workflow. In particular, the use case is representative for the “con-
struction and certification of a power plant” use case. Moreover, the use case is
condensed to its core features and omits things like price negotiation or supplier
selection. Furthermore, a requirements analysis is executed which identifies the key
features of the use case.

• Identify state-of-the-art technologies: Survey different blockchains which might sat-
isfy the requirements of the defined use case. Further, identify technologies which
may aid blockchains to deal with confidential data assets and workflows.

• Design a solution for the use case: Design and implement a prototype that repre-
sents a solution for the use case. In particular, it shows which features of HLF solves
which requirement. Moreover, it precisely identifies suitable technologies, designs
and concepts for solving the use case. Further, only the parts of the design that run
within the blockchain network are implemented.

• Identification of important design choices: The design of the use case shows what
implications certain design choices may have. The implication and significance are
discussed and pitfalls are identified. The creation and application of attacker models
are withing the scope.

• Requirements mapping: Each requirement that is identified will be mapped to fea-
tures withing HLF or parts of the created concept that has been created.

Further, the use case is not a classical retail use case where millions of buyers buy one
standard product for one seller. Thus, transaction throughput and transaction latency are
not focused on. Also, only technologies that were available as open source were considered
for the thesis.

1.3. Structure of the Thesis

The thesis has the following structure. Chapter 1 presents the goal of the thesis. Next,
Chapter 2 introduces the use case and its requirements. Further, Chapter 3 presents the
background of this work which includes DLT’s, HLF, and other innovative technologies.
Then, Chapter 4 presents the concept for the use case. Further, Chapter 5 details the
implementation of the prototype for the concept. Also, Chapter 6 evaluates the solution
based on proposed attacker models, shows pitfalls, and provides lessons learned. Lastly,



1. Introduction 5

the conclusion is drawn in Chapter 7, which also points out possible future research
directions.



2. Use Case

The use case that is used for this thesis is discussed in this section. Importantly, the use
case involves a distributed multilateral workflow. Importantly, the use case involves a
small number of stakeholders that work together to produce a highly complex product for
one buyer. Further, the consequence of errors is significant, the costs are considerable, and
at the moment these processes are mostly paper based. The challenge is to digitize this
process while securing the confidentiality of data assets and workflows and simultaneously
creating a privacy enhancing audit trail which can attest the correct execution of the
workflow. First, Sec. 2.1 will outline the context of the “construction and certification of
a power plant” use case. Further, Sec. 2.2 will describe a reduced use case that will be
used throughout this thesis. Lastly, Sec. 2.3 conducts the requirements analysis for the
reduced use case.

2.1. Overview

Plant Design Stage System Design Stage Component Design Stage Fabrication Stage

Mounting StageCommissioning StageTest Approval Stage

Figure 2.1.: State diagram that illustrates the different stages of the construction and
certification of a power plant use case according to [76].

Generally, the use case describes the process of constructing and certifying a power plant
is composed of various stages (see Fig. 2.1). First, the plant is designed during the plant
design stage. Next, multiple system designs that make up the plant are created in the
system design stage. Further, the component stage sees the planning of various components
that make up each system. These components are fabricated during the fabrication stage.
Next, these components are mounted together to form the systems during the mounting
stage. The commissioning stage sees the first establishment of normal operations for each
system. Lastly, the plant is assembled and put into operation during the test approval
stage [76]. During every stage of the process, the produced documentation is certified and



2. Use Case 7

approved by different stakeholders. The documents may contain sensitive information.
For instance, the design of various systems or components is valuable and may have to
be purchased before the usage and viewing is permitted. In addition, details like building
plans or the device operation manuals are most important to the safe operation of power
plants. For instance, a faulty operation manual may lead to an incorrect operation of the
power plant which may lead to a calamity. Thus, the workflow and its data asset’s integrity
and confidentiality must be assured in each stage. For instance, an offer for a certain part
must only be visible to the sender and recipient. In addition, each participant needs to
be able to verify the integrity of the offer to check that it has not been tampered with.
The focus of this thesis is the workflow and flow of data assets between organizations,
the audit trail for the distributed workflow, and the confidentiality of data assets and
workflows.

2.1.1. Stakeholders

Generally, a great variety of stakeholders may be involved when planning and certifying a
power plant. To keep the scope focused only the active stakeholders are considered. Hence,
the participants of the distributed multilateral workflow are the stakeholders. Each stage
sees the participation of a distinct subset of the stakeholders. Figure 2.2 illustrates which
stakeholder is involved in which states. In brief, the following active stakeholders were
identified.

Construction of a Power Plant

Plant Design System DesignComponent Design FabricationMounting Commissioning Test Approval

EPC NOBO

SupplierOwner

Figure 2.2.: Use case diagram which depicts which stakeholders are participating in which
use case according to [76].

• Engineering, Procurement, and Construction contractor EPC: This is the entity
that is responsible for all the activities from design, procurement, construction,
commissioning and handover of the project to the Owner.

• NOBO is usually a governmental entity that is notified on each major step. It
certifies the correct execution of certain steps and documents. In addition, it may



2. Use Case 8

perform audits on site and creates audit reports.

• The Owner of the final product usually approves and accepts steps and will trigger
rework steps if it is not satisfied with the results. The Owner will own the plant in
the end and most likely operate the power plant themselves.

• The Supplier is an organization that produces one or multiple components for the
EPC and they get their assignments directly from the EPC. Multiple suppliers may
exist for a single component which leads to a possible competition for assignments
among the suppliers

2.2. Fabrication Stage Use Case

Modeling the use case in its entirety with all workflows, processes, and critical assets is a
lengthy and complex task. The scope of the complete use case (see Sec. 2) is deemed too
big for this thesis. Hence, the need arises to construct a smaller use case. The work of
Stahnke [76], Wimmer and Kasinathan [70, 71] and multiple discussions with supervisors
shaped the construction though multiple iterations. The goal is to encompass most of the
actors of the original use case, to include a distributed workflow where multiple actors
participate in the execution, and to include confidential data assets and workflows.

2.2.1. Setting

The use case is named “fabrication stage” because it might happen during the fabrication
stage during a power plant construction. The component that is produced is a special
cabinet. The cabinet contains various electrical components that control an arbitrary
system inside the power plant. Importantly, the cabinet is to be placed inside an area
that may contain explosive reagents. For instance, the storage for liquid natural gas
might be close by. Cabinets which are placed in explosion-risk areas are subject to high
safety standards because any explosion could cause a calamity. Therefore, the cabinet is
constantly flushed with an inert gas, e.g. nitrogen or argon. The inert gas and the elevated
pressure inside the cabinet prevent the explosive gases from igniting. In addition, a special
pressure sensor inside the cabinet constantly monitors the pressure difference between the
inside of the cabinet and the outside. Whenever the pressure difference drops too low,
explosive gas might enter the cabinet and ignite on the electrical components. Thus,
special requirements apply to the pressure sensor and the cabinet. In conclusion, it is
vital for the Owner that the quality, compliance and provenance with regulation and
reliability of the cabinet and its components is assured. This assurance must be held
up in manufacturing, installation, deployment and during regular maintenance checks.



2. Use Case 9

However, this use case is not derived from an actual power plant construction and only
serves as an example for this thesis.

2.2.2. Actors

The stakeholders NOBO, EPC and the Owner that have been described in Sec. 2.1.1
are involved in the fabrication stage use case as well. Further, there are multiple suppliers
available. S1 and S2 can produce components for the EPC. S1 is the Supplier 1 which
can produce the pressure sensor for the EPC. Also, S2 is the Supplier 2 which is not
involved in the cabinet production but may be needed for other systems. S2 is important
because its omission simplifies the design in Chapter 4 too much. For example, if only
one supplier exists there is no need to protect the CP SO (pressure sensor offer see Sec.
2.2.3) from unauthorized access.

2.2.3. Data Assets

The following data assets are involved in the fabrication stage use case. Further, the
prefix C (Confidential) states that this document is confidential and should only be shared
between a subset of the actors and the prefix D (Document) states that this is a document,
and no special precautions need to be taken. The data assets are listed in the order of
their appearance:

1. DCDS Cabinet Design Specification: It describes the requirements that apply to the
cabinet. Importantly, the cabinet is to be placed in an explosive area. Hence, it is
equipped with a pressure sensor that monitors the pressure difference between the
inside and outside of the cabinet to assure excess pressure inside the cabinet.

2. CCO Cabinet Offer : This is the offer that the EPC sends to the Owner whenever
the Owner requests a particular cabinet. It may include confidential information
such as price and delivery date which must only be shared with the EPC and the
Owner.

3. DP SS: Pressure Sensor Specification: This document describes the requirements for
the pressure sensor. The specification depends on the design specification of the
cabinet.

4. CP SO: Pressure Sensor Offer : This document is sent by the Supplier 1 to the EPC
and it includes information regarding the price and delivery date of the pressure
sensor. This information needs to stay confidential and should only be shared with
the EPC and the Supplier 1.



2. Use Case 10

5. DP SF S: Pressure Sensor Fact Sheet: It describes the technical features of the final
pressure sensor. For example, sensitivity, reaction time and precision.

6. DEAS: EPC Acceptance Sheet: The sheet states that the EPC approves and accepts
the pressure sensor. It might contain a test report and approval of the pressure
sensor. It is handed to the Supplier 1 when the EPC accepts the pressure sensor
delivery.

7. DCF S: Cabinet Fact Sheet: It describes the technical features of the cabinet. For
example, excess pressure inside, compliance with regulations or the list of functions.

8. DAR Audit Report: The audit report is issued by NOBO and it states that the DCF S

satisfies the requirements of the DCDS. Importantly, the Owner bases their decision
whether it should accept the cabinet on this report. The audit report assures the
Owner of the correct production of the cabinet.

9. DOAS: Owner Acceptance Sheet: Represents the final approval by the Owner when
being handed over the cabinet.

2.2.4. Confidentiality

Table 2.1 shows the access control list that applies to the data assets that are used in the
use case. The following enumeration provides explanations for each data asset regarding
the access control list. In addition, Figure 2.3 is a use case diagram for the fabrication
stage use case. It shows that the overall workflow can be separated into three different sub
use cases. First, the Cabinet Order happens between the EPC and the Owner. Second, the
Pressure Sensor Order takes place between the EPC and S1. Finally, Cabinet Evaluation
incorporates the interaction of NOBO and the EPC. In addition, the required data assets
are also visible in the use case diagram.

Fabrication Stage Use Case

Cabinet Order

Cabinet Design Specification
Cabinet Fact Sheet

Cabinet Offer
Owner Acceptance Sheet

Pressure Sensor Order

Pressure Sensor Specification
Pressure Sensor Offer

Pressure Sensor Fact Sheet
EPC Acceptance Sheet

Cabinet Evaluation

Cabinet Design Specification
Cabinet Fact Sheet

Audit Report

EPCNOBO S1 S2Owner

Figure 2.3.: Use case diagram for the fabrication stage use case which also shows which
data assets are associated with which sub use case.



2. Use Case 11

Objects
Subjects Owner EPC NOBO S1 S2

R W R W R W R W R W
DCDS Cabinet Design Specification X X X X
CCO Cabinet Offer X X X
DP SS Pressure Sensor Specification X X X X X
CP SO Pressure Sensor Offer X X X
DP SF S Pressure Sensor Fact Sheet X X X X
DEAS EPC Acceptance Sheet X X X X
DCF S Cabinet Fact Sheet X X X X
DAR Audit Report X X X X
DOAS Owner Acceptance Sheet X X X X

Table 2.1.: Access control list for the data assets of the fabrication stage use case. A
check mark in the R(W) column indicates read(write) access for the given
stakeholder.

1. DCDS: The cabinet design specification is created by the Owner. It needs to be read
by the EPC, because it needs the information to decide what kind of conditions it
offers for the production. In addition, NOBO needs to read it to learn about the
cabinet’s requirements to produce the audit report. However, the suppliers must
not know about the cabinet design specification.

2. CCO: The cabinet offer is created by the EPC. The Owner needs read access to
decide whether to accept the cabinet offer or not. Importantly, NOBO, S1 and, S2
must not know about these conditions.

3. DP SS: The pressure sensor specification is created by the EPC. S1 needs to read
it to decide what kind of conditions it offers for the production of the sensor. Fur-
thermore, S2 does not produce pressure sensors yet. However, the read access to
the specification might enable them to make more informed decisions regarding new
investments. Yet, the Owner does not need to know about the Suppliers of the
EPC. Subsequently, the Owner does not need to know about the pressure sensor
specification.

4. CP SO: The pressure sensor offer is created by S1. The EPC needs to read it in
order to decide whether to accept or decline the offer. However, NOBO, S2 and,
the Owner must not know about this offer.

5. DP SF S: The pressure sensor fact sheet is created by S1. The EPC needs access the
fact sheet to create the cabinet fact sheet, because the pressure sensor is a part of
it. However, S2 may also read the fact sheet. Perhaps such information leads to
better informed business decisions.



2. Use Case 12

6. DEAS: The EPC acceptance sheet is created by the EPC. Only the Owner and
NOBO may read the acceptance sheet. Importantly, S1 and S2 must not learn
anything about the interaction between the EPC and the Owner.

7. DCF S: The cabinet fact sheet is created by the EPC. NOBO needs to read it to
produce the audit report. The Owner buys the cabinet and therefore should have
access to it as well. However, the suppliers must not be involved.

8. DAR: The audit report is created by NOBO. The EPC needs to read it in order
to know whether the produced cabinet satisfies the requirements, and the Owner
needs to read it in order to determine whether they accept the cabinet delivery. The
supplier should not learn anything about this data asset.

9. DOAS: The owner acceptance sheet is created by the Owner. Access to it need not
be controlled because it only specifies that the owner accepted the delivery of a
cabinet that was produced by the EPC. However, the suppliers are not involved in
the cabinet production and must not know about it.

2.2.5. Workflow

Next, the data assets, actors and confidentiality are used to explain the entirety of the
multilateral distributed business process. Figure 2.4 illustrates this business process.
Importantly, each step is associated with an actor. In summary, the business process is
distributively executed by the actors EPC, NOBO, S1, and the Owner. The following
steps make up the workflow:

1. The Owner wants to order a cabinet that satisfies the specification DCDS. Thus,
the Owner request an offer for a cabinet from the EPC. They provide the cabinet
design specification DCDS.

2. The EPC sends the cabinet offer CCO that is based on the cabinet design specifi-
cation DCDS that the Owner sent in the previous step.

3. The Owner receives the cabinet offer CCO and accepts it. The EPC and the Owner
are now committed to the specification and the offer. Importantly, this is a simpli-
fication of the negotiation and the case where the offer is not accepted is omitted.
The rejection of an offer would either end the workflow prematurely or introduce
more complexity with another EPC which is out of scope.

4. The EPC can produce most of the cabinet. However, the EPC needs an external
supplier to produce a pressure sensor for the cabinet. Hence, the EPC produces
the pressure sensor specification DP SS. Employees of the EPC may extract the



2. Use Case 13

specification through some unknown process from the cabinet design specification
DCDS. This process is out of scope.

5. The EPC requests an offer for a pressure sensor with the specification DP SS. Thus,
the EPC makes the specification available to the supplier S1.

6. S1 sends the pressure sensor offer CP SO to the EPC. It is based on the pressure
sensor specification DP SS.

7. The EPC receives the pressure sensor offer CP SO and decides to accept the offer. S1
and the EPC are now committed to DP SS and CP SO. Importantly, the negotiation
is a simplification. The reasons are the same as in step 3.

8. S1 uses their internal processes to produce the pressure sensor. This process is out
of scope. The pressure sensor fact sheet DP SF S is a result of this process.

9. S1 delivers the DP SF S and the pressure sensor to the EPC.

10. The EPC tests the pressure sensor with their internal processes. These tests are
executed to ensure that the pressure sensor satisfies its own fact sheet DP SF S. These
tests are not considered, and it is assumed that the EPC Acceptance Sheet DEAS is
issued upon successful execution these tests.

11. The EPC integrates the pressure sensor into the cabinet.

12. The EPC creates the cabinet fact sheet DCF S. Importantly, the pressure sensor
fact sheet DP SF S is used when the DCF S is created. This process is out of scope
and may be by some of EPC’s employees.

13. The EPC requests an evaluation of the DCF S and DCDS. The result states whether
the fact sheet fulfills the requirements of the design specification. The request is
directed to NOBO.

14. NOBO accepts the evaluation request. The case where NOBO declines is not
considered for the reasons mentioned in step 3.

15. NOBO finishes the evaluation of DCF S and DCDS and subsequently produces the
audit report DAR which is sent to the EPC.

16. The EPC hands the cabinet and the audit report DAR over to the Owner.

17. The Owner approves the cabinet with the issuance of the owner acceptance sheet
DOAS. The case where the Owner does not approve the cabinet is not considered.
Such an extension would add multiple steps to the already lengthy use case. It is
assumed that such additions only add complexity.



2. Use Case 14

Owner

Owner

EPC

EPC

S1

S1

NOBO

NOBO

1 request_cabinet_offer(D_CDS)

2 send_cabinet_offer(C_CO)

3 accept_cabinet_offer()

4 D_PSS = extract(D_CDS)

5 request_pressure_sensor_offer(D_PSS)

6 send_pressure_sensor_offer(C_PSO)

7 accept_pressure_sensor_offer()

8 produce_sensor()

9 finish_pressure_sensor_order(D_PSFS)

10 accept_pressure_sensor_delivery(D_EAS)

11 integrate_pressure_sensor_into_cabinet()

12 D_CFS = create_cabinet_fact_sheet(D_PSFS)

13 request_evaluation(D_CFS,D_CDS)

14 accept_evaluation_request()

15 finish_evaluation_request(D_AR)

16 finish_cabinet_delivery(cabinet, D_AR)

17 accept_cabinet_delivery(D_OAS)

Actors
EPC Engineering Procurement and Construction
Owner Owner of the cabinet
NOBO Notification Body
S1 Supplier of the pressure sensor

Artifacts
C_ Document is confidential
D_ Document is not confidential
D_CDS Cabinet Design Specification
C_CO Cabinet Offer
D_CFS Cabinet Fact Sheet
D_AR Audit Report
D_OAS Owner Acceptance Sheet
D_PSS Pressure Sensor Specification
C_PSO Pressure Sensor Offer
D_PSFS Pressure Sensor Fact Sheet
D_EAS EPC Acceptance Sheet

Figure 2.4.: Sequence diagram of the fabrication stage’s workflow.

Lastly, Figure 2.3 showed that the overall workflow can be separated into 3 sub work-
flows. All of these bilateral workflows happen between the EPC and on other actor.
Importantly, the EPC does not want to disclose the Pressure Sensor Order workflow to
the Owner. Consequently, it can be said that this workflow is a confidential workflow.

2.3. Requirement Analysis

This section describes the methodology that was used to gather and structure the require-
ments of the fabrication stage use case in Sec. 2.3.1. Next, Sec. 2.3.2 lists the collected
requirements.



2. Use Case 15

2.3.1. Methodology

The requirements that are listed in Sec. 2.3.2 were gathered through an iterative process.
The “construction and certification of a power plant” that Stahnke [76] worked on in her
thesis was used as a reference. Next, the supervisors of the thesis take part in a project
which is called Cyber Security for Europe. Some publicly published results of the project
[71, 70] were also used as a reference. Then discussions and reviews by the supervisors
resulted in the refinement of the gathered requirements.

2.3.2. Fabrication Stage Requirements

ID Requirement Description Priority Mandatory
FA01 Asset Creation Every entity can create an

asset or multiple assets.
High Yes

FA02 Access Control on Assets Entities can be given read
and or write access to an
asset.

High Yes

FA03 Revoking Access Entities can revoke access
rights from assets.

High Yes

FA04 Transferring Assets The control over an asset
can be transferred from
one entity to another

Medium No

FA05 Access Traceability Read and write access
must leave tamper proof
evidence.

High Yes

FA06 AC auditability Changes to access control
must leave tamper proof
evidence.

High Yes

Table 2.2.: Functional requirements for data assets of the fabrication stage use case.

Table. 2.3 lists and prioritizes the identified nonfunctional privacy and security require-
ments for the fabrication stage use case. Table 2.2 shows the functional requirements for
data assets.

https://cybersec4europe.eu/


2. Use Case 16

ID Requirement Description Priority Mandatory
SP01 Actor Authentication Actors must be authenti-

cated and have a verifiable
identity.

High Yes

SP02 Transaction Authentica-
tion

Actors must sign all their
transactions with their
digital signature.

High Yes

SP03 Identity Management Organizations can use
their existing PKI to
provide their employees
with keys.

Medium No

SP04 Non-Repudiation Interactions with the sys-
tem must leave tamper
proof evidence.

High Yes

SP05 Accountability Interactions with the sys-
tem can be traced to ver-
ify the compliance with es-
tablished regulations, con-
tracts or similar.

High Yes

SP06 Data in Transit Confiden-
tiality

Messages that contains
sensitive data must run
over secure channels.

High Yes

SP07 Data at Rest Confidential-
ity

Sensitive data must be
protected against unau-
thorized access.

High Yes

SP08 Access Control Access can be customized
individually for each data
asset.

High Yes

SP09 Integrity The integrity of data as-
sets can be verified by
entities with read access
rights.

High Yes

SP10 Organizations Only the stakeholders
mentioned in Fig. 2.1.1
can participate and be a
part of the system.

High Yes

Table 2.3.: Security and privacy requirements for the fabrication stage use case.



3. Background and Related Work

Following chapter sets up the foundation for this thesis. Section 3.1 will introduce the
distributed ledger technology (DLT) field and clarify some important terminology. Next,
Sec. 3.2 will introduce Hyperledger Fabric (HLF). It will introduce the most important
aspects of it that are necessary for this thesis. Lastly, Sec. 3.3 briefly introduce zero
knowledge proofs ZKP, Sec. 3.4 surveys the possibilities of homomorphic encryption (HE),
Sec. 3.5 looks into secure multiparty computation (SMPC), and Sec. 3.6 will briefly look
at the TEE.

3.1. Distributed Ledger Technology

According to Liu et al. “distributed ledger technology (DLT) is a general term that is used
to describe technologies for the storage, distribution, and exchange of data between users
over private or public distributed computer networks.” Many different DLT concepts
exist. Blockchain is one of them and will be the focus of this thesis. “Blockchain is a
specific type of distributed ledger technology. It takes several records and puts them into
blocks. Each block is chained to the next block, using a cryptographic signature” [79].
Figure 3.1 illustrates three blocks which are chained together. Figure 3.2 further details
the contents of the block header.

B0 H0

D0

B1 H1 B2 H2

D1 D2

(genesis) T2T1 T3 T5T4 T6

Block

Block Header

Block Data

Transaction

H1 is chained to H2

B0

H0

D0

T1

H1 H2

Figure 3.1.: Generic chain of blocks according to [3, 80].

Other concepts such as blockDAG and transaction directed acyclic
graph (TDAG) exist [44] but they are not further considered. Bit-
coin is the first blockchain and it was introduced in 2008 by Nakamoto.



3. Background and Related Work 18

H1
Block Header

Hash of the current
block's block data

Hash of the previous
block's block header

H1block number =1

H(D1)

H(H0)

H(D1)

H(H0)

Figure 3.2.: Generic block header according to [3, 80]

Bitcoin introduced a new
kind of money which
is called decentralized
money which is not de-
pendent on institutions
or governments [14].
Then Ethereum brought
the decentralization of
markets to the table in
2014. It generalized the
concepts of Bitcoin and enabled the development of smart contracts. Smart contracts
are decentralized applications which modify the state of the blockchain according to
their own set of rules [8]. In short, the characteristics of blockchain such as decentralized
consensus, data immutability, decentralization, transparency and auditability make it
appealing for different industries. For example, Agbo and Mahmoud explored its usabil-
ity for healthcare applications where protecting patients’ health data is an important
consideration [9]. In addition, blockchain is applied to public key infrastructure (PKI),
traffic load balancing and power systems [34]. This section introduces general concepts
of blockchain and surveys multiple blockchains that can execute smart contracts.

3.1.1. Permission model

The way in which nodes are added to a blockchain network varies. Some blockchain net-
works allow anyone to participate. Others are tailored towards classical business models
and restrict access. This is known as the permission model. Two distinct models are
distinguished. There is the permissionless and the permissioned blockchain.

• “Permissionless blockchain networks are decentralized ledger platforms open to
anyone publishing blocks, without needing permission from any authority” [80].
The result is that every user of such platforms can publish or read blocks. There
may exist malicious users that try to publish blocks in a way to subvert the system.
For example, users might try to produce an alternative chain where a transaction
has been erased. This could be an attempt to refund a payment. Section 3.1.2 will
introduce consensus models which try to mitigate these kinds of threats.

• “A User must be authorized to act in a permissioned blockchain network. This
includes read and write access control of the ledger and the issuance of transac-
tions. Similarly, only authorized nodes can join such a network” [80]. The au-
thorization for the users may be done by a centralized or decentralized authority.



3. Background and Related Work 19

These blockchains also employ a consensus model. Further, consensus models in
permissioned blockchain networks can rely on the identity of nodes in the proof of
identity (POI) model or on hardware requirements in proof of elapsed time (PoET)
(see Sec. 3.1.2). Yaga et al. argue that consensus models in permissioned blockchain
networks can be less computationally expensive than the proof of work (POW) con-
sensus model which is used by the permissionless blockchain Bitcoin.

3.1.2. Consensus

An important part of each blockchain system is the consensus model. It is responsible for
deciding which block gets added next to the blockchain [80]. There exist a multitude of
approaches. Thus, only the most important algorithm POW is briefly mentioned. This
consensus model is used by Bitcoin and it is a randomized protocol which implicitly
selects a node based on a probabilistic scheme that is difficult to bias [25, 56]. The first
participating node that solves the puzzle: Hash(Data+X) = HashV alue gets to publish
the next block. The value of X must be guessed such that the HashValue is smaller
than the difficulty target D. Further, the verification of a correct solution is easy, but
the discovery of a solution is hard and can be adjusted depending on the size of D. If
the difficulty target’s value increases, then it get easier to find possible solutions because
the amount of possible solutions increases. Likewise, a decrease of the difficulty target
makes finding solutions harder because the probability of a hash being smaller than D
decreases. Bitcoin calculates the next difficulty target Dnext every 2016 blocks with
the following formula: Dnext = (Dprev ∗ 2016 ∗ 10min)/(time to mine last 2016 blocks).
Thus, the difficulty is scaled such that a block is published on average once every ten
minutes [57]. The solution is the "proof" that the node has done the "work". In brief,
other nodes receiving the block can verify the solution and accept or reject it based on the
result of the verification. More consensus models like proof of stake, proof of authority or
round robin consensus [80, 66] exist. In permissioned blockchains where the participation
to the blockchain network is limited other consensus models may be applicable which
require a certain level of trust. For instance, the blockchains Quorum and Hyperledger
Fabric (HLF) implement a consensus mechanism called Raft [60]. “Raft is a consensus
algorithm for managing a replicated log” [60]. The consensus protocol can withstand
a crash of individual nodes as longs as a majority remains active. Hence, it can be
called crash fault tolerant (CFT) [3]. Importantly, CFT has the following property: “In
response to a failure, the component changes to a state that permits other components
to detect that a failure has occurred and the stops” according to Schneider [67]. Hence,
it is suitable only for permissioned blockchains where it can be assumed that nodes do



3. Background and Related Work 20

Blockchain Smart Contract Language
Hyperledger Fabric Go, Java,Node.js,*
Ethereum Solidity
R3 Corda Kotlin,Java

Table 3.1.: Programming languages that are used to create smart contracts [9, 78].

not act maliciously. Furthermore, it cannot withstand so-called Byzantine faults. “In
Byzantine model, a component can exhibit arbitrary and malicious behavior, perhaps
involving collusion with other faulty components [47, 68]”. However, Quorum implements
a protocol called Istanbul Byzantine fault tolerant (IBFT) [6, 3] which is inspired by Castro
and Liskov’s work [30] on practical Byzantine fault tolerance (PBFT). Such systems can
tolerate at most F faulty nodes when the number of nodes is N: N = 3F + 1 [30, 6].

3.1.3. Smart Contracts

“A smart contract is a collection of code and data [...] that is deployed using cryp-
tographically signed transactions on the blockchain network [...]. The smart contract is
executed by nodes within the blockchain network; all nodes that execute the smart con-
tract must derive the same results from the execution, and the results of execution are
recorded on the blockchain” [80]. The definition of smart contracts from Yaga et al. speaks
of executing smart contracts on multiple nodes. Two different approaches for executing
smart contracts are known in the context of blockchain. This section will introduce the
widespread order execute architecture (see Sec. 3.1.3.1). Later in Sec. 3.2 the novel
execute order validate architecture is introduced. Further, potential benefits of smart
contracts include low contracting, enforcement, and compliance costs [79]. Their code
can represent a multilateral transaction, typically in the context of business processes
[80]. Hence, securing smart contracts that work with confidential data assets is one of
the focuses of this thesis. Consequently, only blockchains that allow for custom smart
contract execution will be considered and discussed. Two important properties of smart
contracts are:

1. Determinism: Smart contracts may need to be deterministic if multiple nodes must
produce the same results. Their results might have to be reproduced on multiple
nodes to validate the transaction. However, there is the concept of an oracle [80]. It
enables values that are only available outside the blockchain network to be accessible
to nodes inside the network. In brief, every re-executing node can access the same
value. Oracles are not needed for the fabrication stage use case (see Sec. 2.2).
Hence, oracles are not considered further.



3. Background and Related Work 21

Order Execute Update_State

Figure 3.3.: Order execute architecture according to [11].

2. Programming language: Another important aspect of a smart contract is the pro-
gramming language that it is written in. Table 3.1 illustrates the great variety when
it comes to languages that can be used to develop smart contracts. While HLF takes
an open approach, Ethereum uses domain specific languages, e.g. Solidity.

Next, Sec. 3.1.3.1 will describe the order execute architecture. It determines how the
results of smart contract invocations are disseminated and agreed upon in a blockchain
network.

3.1.3.1. Order Execution

It is used by all blockchains that are surveyed in Sec. 3.1.5 except HLF. As illustrated in
Fig. 3.3 there exist 3 main steps.

1. Order: The blockchain network establishes an order using some consensus model.

2. Execute: Every node executes all transactions in the same order sequentially.

3. Update: The state is updated according to the results of step 2.

For example, Ethereum combines the proof of work (POW) consensus (see Sec. 3.1.2) and
the order execute architecture as follows. First every node that participates in consensus
gathers transactions that it deems valid. The transactions are usually executed first to
decide if they are valid or not. Secondly every node tries to solve the POW puzzle. Thirdly
the lucky node that solved the puzzle disseminates the solution and the block to other
nodes. Lastly, all nodes check the validity of the puzzle and all of the transactions [11].
Androulaki et al. mentions the following limitations of this system:

1. Sequential execution: This limits the effective throughput and introduces vulnerabil-
ities to malicious smart contracts that intentionally take a long time. This problem
may be solved with cryptocurrencies and the demand of a fee for the execution of
a smart contract function. In Ethereum this fee depends on the complexity of the
function and is billed to the submitter of the transaction.

2. Non-deterministic code: The smart contracts must be deterministic. Hence, all
nodes that execute the same smart contract function with the same inputs derive
the same results. In conclusion, the smart contract’s code has to be written in a



3. Background and Related Work 22

way that make it impossible to introduce nondeterminism. A solution to enforce
determinism is the usage of a domain specific language (DSL) (see Sec. 3.1.5.1).
However, this forces developers to learn new languages and therefore may slow the
rate of adoption.

3. Confidentiality of execution: Which is known in this thesis as evaluation privacy.
The requirement for re-execution to validate transaction requires the code to be
public. Hence, the business logic in the smart contracts are shared with all par-
ticipants. Consequently, no evaluation privacy is possible. Sections 3.3, 3.4, 3.5,
and 3.6 investigate upcoming technologies which could be used to achieve evalua-
tion privacy despite using the execute order validate architecture. But according
to Androulaki et al. this is not yet viable in practice because of the considerable
overhead.

3.1.4. Privacy and Confidentiality

Privacy and confidentiality are important properties for the use case (see Sec. 2.3.2). For
example, the cabinet offer must stay confidential. It must only be accessible by the EPC
and the Owner. Equally important the privacy of patients and their health records must
be considered and the strict rules of the general data protection regulation (GDPR) must
be applied [9]. However, the use case does not handle privacy related data. Further,
smart contracts inherit undesirable properties from blockchains. As can be seen in Sec.
3.1.3.1 the order execution architecture requires that all nodes in the network execute
all transaction. Therefore, all nodes need the smart contract code and the respective
inputs. Hence, existing smart contract systems may lack confidentiality or privacy [83].
A survey of Khan and Nassar [45] assessed the ongoing development in this direction.
They concluded that many solutions require trust in a third party [45]. HLF provides
multiple ways to mitigate this undesirable property. Features such as channels, private
data collections and endorsement policies are investigated in more detail in Sec. 3.2.
Next, a brief overview of some notable blockchains follows in Sec. 3.1.5.

3.1.5. Overview

This section gives a brief summary of selected blockchain networks. The large number
of distributed ledger platforms that have been developed recently [11] makes it impossi-
ble to compare each of them in this thesis. Hence, following sections will highlight the
key distinguishing factors of each blockchain. In addition, a conclusion for each candi-
date attempts to give reasons as to why HLF is chosen over the reviewed technologies.
Furthermore, HLF is described in detail in its own Sec. 3.2.



3. Background and Related Work 23

3.1.5.1. Ethereum

Ethereum attempts to be the platform on which all transaction-based concepts can be
built upon. Its key feature is the ability for untrusted individuals to do transactions with
each other [66]. Ethereum uses the order execution architecture for the smart contract
execution. Further, Ethereum uses a domain specific language (DSL) named Solidity
for smart contract development. This DSL may only allow the implementation of smart
contracts that are deterministic which is a necessity for the order execution architecture
(see Sec. 3.1.3.1). The downside is that developers have to learn a new programming
language to implement smart contracts for Ethereum. In addition, Ethereum provides
a built-in currency which is named Ether [78, 11]. Furthermore, this cryptocurrency
must be used to pay for the transaction fee. Moreover, the fee depends on the amount
of gas that is consumed by the transaction. To elaborate, the complexity of the smart
contract determines the amount of gas. Specifically, an amount of gas is assigned to
each low-level computation step [11]. This is converted to a price with the gas price
which must be paid for by the transaction’s submitter. Therefore, malicious denial of
service (DOS) contracts (see Sec. 3.1.3.1) can be prevented with this cost. However,
Grech et al. [41] identify vulnerabilities of Ethereum smart contracts which they call Out-
of-Gas attacks. These attacks exploit the existence of the gas limit for the smart contract
execution in Ethereum. Whenever the gas limit is reached an out-of-gas exception aborts
the transaction. Consequently, attackers can force key functionality of smart contracts
to run out of gas which is a permanent DOS for the contract. Also Grech et al. show
how such vulnerabilities can be avoided [41]. Further, Ethereum uses a POW consensus
algorithm (see Sec. 3.1.2). Also, Ethereum is a permissionless blockchain. However,
permissioned versions of Ethereum exist. Quorum is the permissioned implementation of
Ethereum (see Sec. 3.1.5.2) [4]. Also, Hyperledger Burrow is a permissioned blockchain
which is derived from Ethereum [66]. Burrow does not implement any relevant features
regarding confidentiality therefore it is not considered further [2].

Conclusion Ethereum is not suitable for the use case described in Sec. 2.3. The per-
missionless characteristic enables public access to the data and all smart contracts. This
is in contradiction to the requirements set up in Tab. 2.3.

3.1.5.2. Quorum

ConsenSys Quorum is an open-source protocol layer that enables enterprises to lever-
age Ethereum for their private or public blockchain applications. On top of ConsenSys
Quorum, you can integrate product modules from ConsenSys to build high-performance,



3. Background and Related Work 24

customizable applications [1]. Quorum is a fork of the Ethereum project that is developed
by JP Morgan. However, it is a permissioned blockchain. Its main focus is the financial
sector but has been developed for any type of industry [62]. Besides, Quorum facilitates
the order execute architecture [11]. To illustrate, a few important changes to Ethereum
are now highlighted:

• Consensus: The resource expensive POW consensus algorithm that Ethereum uses
see Sec. 3.1.5.1 is now replaceable. Quorum provides a Raft and IBFT consensus
implementation [16] (see Sec. 3.1.2).

• Privacy: Quorum allows transactions between a subset of the overall participants.
These private transactions are ordered like the public transactions. Therefore, their
existence is known by every participant. The transaction payload is replaced by a
hash of the actual payload which is distributed off chain. Hence, only authorized
participants may retrieve the payload and execute the transaction. The state of
these private transactions is stored off chain. The hash of the private transaction
payload is still written to the public ledger [6]. Likewise, Quorum can deploy private
smart contracts that are only visible to authorized participants [16].

Conclusion The privacy features and the permissioned nature of Quorum are applica-
ble to the requirements mentioned in Sec. 2.3. The brief overview of Quorum shows
similarities with HLF. Polge et al. [62] reviewed different permissioned blockchains and
summarized that HLF outperforms Quorum in the analyzed metrics adoption and pri-
vacy. The former indicates that HLF is adopted by more industrial use cases and the
latter measured how restrictive a framework could be regarding the granularity that data
and transactions can be shared [62]. Specifically, the granularity with which data and
transactions can be controlled is important for the use case (see Sec. 2.3). In brief, Quo-
rum has interesting features which can be facilitated to implement the fabrication stage
use case. However, HLF is chosen because it is the focus of the thesis.

3.1.5.3. Corda

Corda is a blockchain for recording and processing financial agreements [66, 28]. It is
open source and is a permissioned blockchain [62]. It records financial agreements and
other arbitrary shared data between two or more identifiable parties. Furthermore, it
takes the highly regulated environment into account by augmenting smart contracts with
legal prose. It is a human-language document that is linked to the smart contract. The
result is that the smart contract is legally enforceable [28, 42]. This is where it sees its
main field of application [78]. Corda does not try to keep a global ledger. In cases where



3. Background and Related Work 25

transactions only involve a small subgroup the data is kept purely between this group
[28]. This concept is similar to channels in HLF (see Sec. 3.2.1.7). According to Brown
et al. the core concepts of Corda are [28]:

• State object: represents an agreement between multiple parties. The agreement
consists of two parts. Human readable Legal Prose and machine-readable Contract
Code. Only privileged parties can access the state object of specific agreements
between parties [66].

• Transactions: The actions that transitions a state object though its lifecycle.

• Business Flow: Enabling parties to coordinate actions without a central controller.

Conclusion Corda was built for the explicit purpose of recording and enforcing business
agreements between financial institutions. Especially the addition of human readable
Legal Prose is to be noted. However, this addition is no requirement for the use case
discussed in Sec. 2.3. Also, Polge et al. compared HLF with Corda [62]. They analyzed
multiple metrics and among those were privacy and adoption both of which are important
for the use case. Moreover, the authors concluded that HLF outperforms Corda in these
metrics. The ranking for privacy depended on the granularity by which the visibility of
data and transactions could be controlled [62]. In brief, Corda has interesting features
which could be used to implement the fabrication stage use case. However, Corda’s
focus on financial institutions and this thesis’s focus on HLF lead to Corda not being
investigated further.

3.1.5.4. Ekiden

Ekiden is a combination of blockchain and a trusted execution environment (TEE) which
is a tamper resistant processing environment that allows for execution of confidential
code on an untrusted node while preserving the privacy of inputs [65] (see Sec. 3.6).
Ekiden employs the trusted execution environment from Intel named software guard ex-
tension (SGX). Ekiden can be combined with any blockchain system according to [83] it
can therefore neither be classified as permissioned nor permissionless. Ekiden attempts to
address the shortcomings of blockchain regarding confidentiality and performance with a
combination of TEE and blockchain. Blockchains like Ethereum verify the correct execu-
tion of smart contracts through re-execution on all nodes (see Sec. 3.1.3.1). This results
in every node knowing every input of every smart contract invocation. Consequently,
the inputs cannot be confidential because every node needs them to replicate the smart
contract invocations. Ekiden combines TEE and blockchain to achieve confidential inputs



3. Background and Related Work 26

while still enabling other participants to verify the correct computation. Ekiden shows
that a combination of TEE and blockchain can achieve a decentralized system that can
compute on sensitive data while guaranteeing computational integrity and confidentiality
of inputs [83].
Ekiden separates the computation from consensus. The processing of private data is

delegated to compute nodes. The correct execution is attested on the blockchain. This
attest is derived from the TEE. So called consensus nodes which do not need to run
on trusted hardware maintain the blockchain [83]. The outsourcing of computation to
TEE allows for minimal performance overhead. Importantly, this removes the need for
recomputation to verify the results of smart contract invocations meaning that the network
can spend less resources on the replication and verification of smart contract invocations.
While this is possible with SGX the reliance on it means that Ekiden is not a fully
decentralized solution [29].
Further, the actual smart contract code must be published to the blockchain. This

results in the smart contract code being public. Meaning that confidential smart contracts
cannot be implemented with Ekiden. More detailed descriptions of the system can be
found in [83].

Conclusion Ekiden is an interesting approach that combines TEE and DLT. The re-
liance on the third party begs the question if Ekiden can still be decentralized. Bünz et al.
state that Ekiden is in fact not fully decentralized [29]. Considering the reliance on SGX
it can be concluded that Ekiden is not picked over HLF.

3.1.6. Conclusion

This section briefly introduced exiting DLTs. Ethereum was reviewed in Sec. 3.1.5.1,
Quorum in Sec. 3.1.5.2, Corda in Sec. 3.1.5.3 and finally Ekiden in Sec. 3.1.5.4. An
overview of all existing DLTs to find the best candidate is out of the scope of the thesis.
Androulaki et al. argue that the number of different upcoming developments is too large
[11]. Regardless, it is important to show the diversity of the different technologies. Also,
each approach offered unique characteristics which shows the diversity in the field. In
brief, the DLTs that have been reviewed in this section are interesting candidates for the
fabrications stage use case. A reason why HLF is chosen over them is to reduce the scope
of the thesis. Consequently, Sec. 3.2 will introduce HLF’s features in detail.



3. Background and Related Work 27

3.2. Hyperledger Fabric

Hyperledger Fabric is an enterprise-grade permissioned blockchain. HLF has been de-
signed for enterprise use form the start. It is established under the Linux Foundation.
Hence, it is open source and subject to open governance resulting in a community which
includes 35 organizations and 200 developers. Furthermore, HLF is not dependent on a
cryptocurrency [11]. Equally important it is the first blockchain that runs distributed
applications that are written in standard, general-purpose languages [3]. This means that
more developers already have preexisting skills that can be reused for the development of
HLF applications. The permissioned characteristic allows HLF to use a different approach
to consensus. Fabric has no fixed consensus algorithm and simplifies the replacement of
consensus models [11]. The aforementioned smart-contract executing blockchains (see
Sec. 3.1.5) all use the order execute architecture (see Sec. 3.1.3.1). However, HLF in-
troduces the execute order validate architecture which is discussed in Sec. 3.2.3.1. This
Sec. will introduce the most important aspects of the HLF blockchain. Section 3.2.1 will
introduce the basic components that are present in HLF, Sec. 3.2.2 explains how smart
contracts are executed, Sec. 3.2.3 will introduce the stages that each transaction passes
through, and Sec. 3.2.4 will introduce the private data collection (PDC) which is used to
store confidential data with HLF.

3.2.1. Hyperledger Fabric Basics

Hyperledger Fabric (HLF) is made up of a multitude of different components. Each of
these components has different responsibilities. This Sec. introduces the peer in Sec.
3.2.1.1 and the ordering service in Sec. 3.2.1.2. Further, the difference between chain-
codes and smart contracts will be explained in Sec. 3.2.1.3, and Sec. 3.2.1.4 shows how
chaincodes are deployed in HLF. Then, the structure of the ledger will be shown in Sec.
3.2.1.5 and the membership service provider (MSP) will be explained in Sec. 3.2.1.6.
Finally, the channel concept will be introduced in Sec. 3.2.1.7.

3.2.1.1. Hyperledger Peer

The blockchains main participants are the peer nodes which are responsible for hosting
instances of the ledger (see Sec. 3.2.1.5) and chaincodes (or smart contracts see Sec.
3.2.1.3). Hence, peers are responsible for the execution and the validation of smart con-
tract invocations [11]. Figure 3.4 illustrates a network with 3 peers one smart contract
and one ledger. It shows that the smart contract S1 is deployed on all peers. In addition,
L1 which is the ledger is hosted on all peers.



3. Background and Related Work 28

                                                                      N

P1
S1

L1

Blockchain
network

Ledger

Smart contract

Peer node

P2
S1

L1

P3
S1

L1

N

P

S

L

Figure 3.4.: Illustration of a simplified blockchain network according to [3].

3.2.1.2. Ordering Service

The ordering service is responsible for establishing the total order of all transactions. It
consists of one or more ordering service nodes (OSN). Importantly, the ordering service
neither participates in the execution nor the validation of transactions [11]. However, it
is possible to deploy a peer and an OSN on the same physical machine [3].
Next, the ordering service manages channels, which are separate blockchains running

within HLF (see Sec. 3.2.1.7). To elaborate, the ordering service manages a group of
organizations called the consortium. It contains organizations that are eligible to create
channels [3]. Androulaki et al. lists the technical details for this process [11].
Further, the ordering service has multiple implementations. As of HLF version 2.2 the

Raft implementation is recommended in the documentation [3]. In brief, Raft keeps a log
consistent across multiple nodes. The log is considered consistent if most nodes agree on
the entries and their order. The consenter set is the set of OSN that actively participate
in the consensus algorithm [3]. For more details surrounding the Raft protocol see [60].
In addition, a Solo ordering service is available. It consists of a single OSN and is in-

tended only for testing. Also, HLF implements an ordering service that is based on Kafka
which is an open source, distributed publish-subscribe messaging system [58]. However, it
was deprecated in v2.x [3]. In summary, the recommended implementation is CFT. How-
ever, Androulaki et al. introduces the possibility for an Byzantine-fault tolerant (BFT)
ordering service [11]. Section 3.2.3 will detail the ordering service’s role in the transaction
flow. Details for BFT and CFT can be found in Sec. 3.1.2.

3.2.1.3. Chaincode and Smart Contracts

When reading about HLF the terms smart contract and chaincode are often used inter-
changeably [3, 11]. However, they can mean different things depending on the context.
Figure 3.5 shows a simple example of a sensor chaincode which contains two smart con-
tracts the temperature sensor contract and the pressure sensor contract. In short, multiple



3. Background and Related Work 29

temperature sensor
contract

pressure sensor
contract

sensor
chaincode

Figure 3.5.: Relation between chaincode and smart contract according to [3].

smart contracts can be a part of the same chaincode. In brief, chaincode is used when
referring to the package of smart contracts, or when talking about deployment (see Sec.
3.2.1.4). Chaincodes are deployed to channels which will be introduced in Sec. 3.2.1.7.
Furthermore, chaincodes contain the programs that capture the actual business logic of
the desired application. Chaincodes interact with the ledger to store business objects (see
Sec. 3.2.1.5) and they offer functions that can be executed in transactions [46]. The term
smart contract is used when talking about the business logic. There are two distinct types
of chaincodes:

1. Application chaincode: These are the chaincodes that contain the application logic
and they may be written by untrusted developers [11].

2. System chaincode: These are the special chaincodes that exist to manage the in-
teractions with the blockchain features. For instance, the lifecycle system chain-
code (LSCC) manages how chaincodes are deployed to channels, the endorsement
system chaincode (ESCC) runs on peers to sign transaction responses and the
validation system chaincode (VSCC) validates transactions [3, 46]. The article of
Androulaki et al. provides a more detailed explanation of system chaincodes [11].

Now HLF supports a multitude of programming languages in which chaincodes can be
written in. These include Go, Java and Node [78, 11, 62]. However, other languages can
be used because HLF loosely coupled the chaincode execution with the peer. Each appli-
cation chaincode runs in its own Docker container environment. The interaction between
chaincode and peer is implemented with the remote procedure call (gRPC) protocol. It
is an open source remote procedure call framework that enable communications between
client and server applications transparently [6]. Consequently, if a language supports
gRPC than it can be used to write chaincode in theory. Next, Sec. 3.2.1.4 will introduce
the chaincode lifecycle which outlines how chaincodes are deployed and updated.



3. Background and Related Work 30

3.2.1.4. Chaincode Lifecycle

The chaincode lifecycle allows multiple organizations to agree on how a chaincode can be
used. This process is not static. It is governed by the lifecycle endorsement policy. Each
channel (see Sec. 3.2.1.7) can have a different policy. The policy states who must approve
a chaincode before it can be used. This policy works just like an endorsement policy (see
Sec. 3.2.2). There are 4 steps that need to be completed if a chaincode is to be installed
on a channel:

1. Package chaincode: The program code that is used for the chaincode has to be
packaged. HLF uses the tar file format to package the chaincode. This step is done
by the application’s developer.

2. Install chaincode: Every organization that wants to install the chaincode needs
to have the tar package. Importantly, the package is not saved on the blockchain.
It is only shared deliberately by the developer. The install process returns a hash
which is used to identify the packaged chaincode.

3. Approve chaincode definition: Every organization that wants to use the chain-
code must approve the chaincode’s definition on the channel. The definition contains
the name, endorsement policy, and collection configuration among other important
things. Importantly, it is not necessary to install the chaincode to approve its def-
inition. Hence, it is possible for organizations to approve chaincodes without them
knowing the chaincode’s source code. The organization only needs to have the
chaincode definition, which can be shared out of band, to approve it.

4. Commit chaincode definition: Lastly, once enough approvals are present and
the chaincode lifecycle policy is satisfied one organization can commit the chaincode
definition to the channel. Consequently, it is possible to submit transactions for the
new chaincode.

The process that applies to the installation of chaincodes applies to the upgrade of chain-
codes as well. The same 4 steps must be followed. A special case applies in the case of
endorsement policy updates. In this case the actual binary might not change. Then it is
sufficient to approve the new chaincode definition. Which means the steps 1 and 2 can
be omitted.
Consequently, HLF enables the execution of confidential business logic while still bene-

fiting from the properties of the ledger (see Sec. 3.2.1.5). For instance, Figure 3.6 shows 3
organizations participating in the same channel. The lifecycle endorsement policy in this
case is OutOf(1, EPCMSP.admin). This means that an approval of the EPC’s admin is
enough to enable the commit of the chaincode definition. The chaincode S1 is deployed



3. Background and Related Work 31

N

P1
NOBO

EPC

Owner

NOBO

P2
Owner

P3
EPC

Channel 1

L1

S1

L1L1

1

S1

1 1

S1

Ledger of
channel 1

Smart contract

Peer node

Channel 1

Smart contract S is
deployed on the C1

Peer P is
connected to C1

L1

S

P

S

C1
S

C1

P
1

Figure 3.6.: Example of a confidential smart contract.

on the channel 1. In addition, it is only installed on P3 and P2. P1 which belongs to
NOBO does not have access to the S1’s code. Hence, it can be concluded that S1 can
be used on channel 1 even though it is not shared with NOBO. Thus, confidential smart
contracts are possible with HLF.

3.2.1.5. Ledger

The ledger is the component that is responsible for storing the information about the com-
plete transaction history and the current values of the business objects that are managed
by the smart contracts. It is hosted on peer nodes and consists of two components. The
first component is the transaction block store or blockchain. The second component is the
peer transaction manager or world state [3, 11]. Figure 3.7 illustrates the two components.
The world state represents the current values of the business object and is implemented as
a key-value store. Smart contracts can use functions like putState and getState to interact
with it. The blockchain is the transaction log that incorporates all transactions that have
been disseminated in blocks [3, 11].
Importantly, the chaincodes that are deployed on individual peers only have access to

their specific world state. To elaborate, two smart contracts that are deployed with in
same chaincode can access the same world state. Likewise, two smart contracts that are
deployed with two different chaincodes cannot access the other’s world state directly. This

L1

W Ledger

World
State

Blockchain

L

W

B B

Figure 3.7.: Illustration of the ledger according to [3].



3. Background and Related Work 32

separation is achieved with so-called chaincode namespaces. If access across the borders
of chaincodes should be required than cross chaincode access is needed. HLF provides
the invokeChaincode API see. [3] which allows the invocation of different chaincodes that
are installed on the same peer but not necessarily on the same channel.

3.2.1.6. Membership Service Provider

The membership service provider (MSP) maintains the identities of all nodes in the sys-
tem. That means that all ordering service nodes, peers and clients have identities. The
permissioned nature of HLF means that all interactions among nodes are authenticated
[11]. The MSP is an abstraction meaning there are multiple different implementations
possible. There exists a default implementation which handles standard PKI methods
based on digital signatures. Further, organizations can use their existing PKI with HLF.
In addition, an implementation is available which relies on anonymous credentials for
authorizing clients to invoke transactions without revealing their identities [3] (see. Sec.
3.3.3).

3.2.1.7. Channels

It is possible to support multiple blockchains within the same HLF network. Each of
these blockchains is called a channel. It allows a subset of organizations to exclusively
communicate and maintain a ledger together. Every transaction that takes place within
this channel is only visible to the channel members and the responsible ordering service.
Each channel can be configured independently through its own channel configuration
(CC). The configuration system chaincode (CSCC) is responsible for the managing the
CC. Importantly, the CC defines policies for the channel which govern what specific
organizations are allowed to do. For instance, the Writers policy defines who can submit
transactions [3]. Figure 3.8 shows a minimal example of a very simple blockchain network
with one channel, two organizations R1 and R2, and two applications. Each organization
has their own certificate authority which is used to create identities for each of their clients
and peers. In addition, they have deployed a smart contract S1 on each of their peers.

3.2.2. Endorsement Policies

Endorsement policies are defined for each chaincode and they specify the set of organiza-
tions that must execute a chaincode method and endorse the result from this execution.
Approval or endorsement is given by executing the proposed transaction and subsequently
signing the inputs and results [3, 11]. For instance, given three organizations EPC, NOBO
and Owner. An example endorsement policy can take the following form:



3. Background and Related Work 33

N

P1
Man.

S1 L1

C1

P2
S2

S1 L1

A2A1

CA1 CA2

Client of org 1

Certificate Authority of
org 1

Organization 1

Channel Configuration

A1

CA1

R1

Man.

CC

S2

CC

Figure 3.8.: Illustration of a simplified blockchain network with one channel [3].

• AND(EPC, NOBO): Which would mean that both the EPC and NOBO have to
endorse a transaction for it to be deemed valid.

• OR(EPC, NOBO): Means that one endorsement from either the EPC or NOBO
would be sufficient.

• OutOf(N, EPC, NOBO, Owner): States thatN endorsements are sufficient regard-
less of which one is missing. For instance, if N is 2 then three possible combinations
of endorsements are valid:

1. EPC and Owner

2. EPC and NOBO

3. Owner and NOBO

This is a key distinction that HLF has in comparison to the surveyed DLTs from Sec.
3.1.5. The novel architecture execute order validate architecture (see Sec. 3.2.3.1) in
combination with endorsement policies allows peers that are not executing chaincode to
still validate and apply the results of the transactions to their copy of the ledger. To sum
up, non-executing peers trust the endorsements of executing peers.

N

P1
NOBO

EPC

Owner

NOBO
P2

Owner
P3

EPC

Channel 1

S1 

Smart contract

Peer node

Channel 1

P

S

C1

S1 S1 

Figure 3.9.: Hyperledger Fabric network for the endorsement policy example.

Figure 3.9 shows a small example network that involves three actors from the fabrication
stage use case (see Sec. 2.2). The EPC, NOBO, and the Owner participate in the



3. Background and Related Work 34

network. Only one channel with the name channel 1 exists and one smart contract
named S1 is deployed on that channel. Further, this example illustrates three different
endorsement policies that can be set up for the smart contract S1. Table 3.2 shows 3
different endorsement policies. Figure 3.10 illustrates different transaction proposals and
their endorsements. Importantly, the color of the table cells illustrate if the endorsement
policy is satisfied with the existing endorsements.

Policy Nr Endorsement Policy
P1 OutOf(1, NOBOMSP.peer)
P2 AND(NOBOMSP.peer, EPCMSP.peer)
P3 AND(NOBOMSP.peer, OR(EPCMSP.peer, OwnerMSP.peer))

Table 3.2.: Example endorsement policies for the small example.

P1 The endorsement policy states that it requires the endorsement of NOBO’s peer.
The examples where EPC’s peer or the Owner’s peer give an endorsement don’t
satisfy the policy. Therefore, if NOBO’s peer is unavailable than no transactions of
S1 can be endorsed.

P2 The policy states that NOBO’s and the EPC’s peer must endorse transactions.
Hence, should either peer be unavailable than no transactions of S1 can be endorsed.

P3 This policy is a nested policy. First is always requires an endorsement of NOBO’s
peer. However, the second endorsement can come from either EPC’s or Owner’s
peer. Hence, should NOBO’s peer be unavailable then no transactions can be en-
dorsed. Further, if NOBO’s peer is available than either the EPC’s or the Owner’s
peer must be available.

Transaction
proposal

Endorsement from
EPC

EPC endorses the
transaction tx

Endorsement
policy satisfied

Endorsement
policy not satisfied

tx

tx

P1

P2

P3
tx

EPC

Owner

NOBO

tx tx tx

tx tx tx

tx tx

Figure 3.10.: Endorsement examples for Tab. 3.2.



3. Background and Related Work 35

Another essential point is that not every peer that participates in the same channel
must have all chaincodes that have been deployed to that channel installed. The outcome
is that the endorsement policy dictates where chaincodes must be installed. For instance,
policy P1 only needs endorsements from NOBO’s peer. Hence, it would be sufficient to
install the chaincode on its peer(s). It is impossible to create valid transactions if NOBO’s
peer does not have S1 installed.
Furthermore, this results in the ability of HLF to enable fine-grained access control to

the smart contracts themselves. For instance, policy P2 does not need endorsements from
the Owner’s peer. Hence, it is possible to refuse the Owner access to the smart contract’s
code.
Also, HLF provides 3 different levels of endorsement policies [3]. The previously men-

tioned examples only used chaincode level endorsement policies which apply to the whole
chaincode and all smart contracts inside that chaincode.

1. Chaincode level endorsement policies: It is the default policy that applies
if no other endorsement policy applies. The chaincode level endorsement policies
are agreed to by channel members when they approve a chaincode definition for
their organization according to the LifecycleEndorsement policy (see Sec. 3.2.1.4).
Importantly, an alteration to the chaincode level endorsement policy requires an
upgrade to the chaincode. Hence, it may require additional approval from some
channel members.

2. Collection level endorsement policies: These policies apply to the special pri-
vate data collection (PDC) which stores data off chain and only leaves a hash of
the private data on the actual blockchain. To elaborate, these policies apply when-
ever a chaincode function uses a key of a PDC. If this is the case it overrides the
chaincode level endorsement policy [3]. Importantly, this policy can be more or less
restrictive than the chaincode level endorsement policy. Also, this policy is part
of the chaincode definition and requires a chaincode update to be altered just like
the chaincode level endorsement policy [46]. That aside, there is a separate policy
which states who can store the collection (see. Sec. 3.2.4).

3. Key level endorsement policies: They apply to individual entries in the world
state and they are also known as state-based endorsement policies [12, 46]. For
example, the EPC writes a value to a key. But it wants to make sure that it is
required to endorse changes to this specific key. Hence, it can add a key level
endorsement policy to that specific key. The modification is part of the read-write
set of a regular transaction. It can be set up for private data collections and regular
world state keys. These restrictions can be less or more restrictive than chaincode or



3. Background and Related Work 36

collection level endorsement policies. If multiple keys are modified in a transaction
all applying policies must be satisfied to validate the transaction [3].

The validation system chaincode (VSCC) is responsible for the validation of the endorse-
ment policies. Furthermore, Androulaki et al. provides an overview of the intricacies of
endorsements and presents security considerations and security models for endorsement
policies [12, 11].

3.2.3. Transactions

Transactions are created when a chaincode function is invoked by clients [3]. This Sec.
3.2.3.1 will introduce the execute-order-validate architecture that HLF uses to execute
chaincode functions. Next, Sec. 3.2.3.2 will discuss the application of said architecture
with HLF components. Finally, Sec. 3.2.3.3 briefly discusses whether HLF transactions
fulfill the ACID properties.

3.2.3.1. Execute Order Validate

Hyperledger fabric “follows a novel execute-order-validate architecture for distributed code
execution of untrusted code in an untrusted environment” [11]. Importantly, all other
mentioned blockchains use the order-execute architecture (see Sec. 3.1.3.1). The new
architecture removes the need for sequential execution, non-deterministic code, and it
enables confidential smart contract code. The architecture splits the transaction flow
into four phases. Figure 3.11 illustrates these phases with a state diagram. In brief, the
execution of transactions happens in the execution phase. In addition, the correctness
of the transaction is checked. Next, the transactions are ordered in the ordering phase.
Importantly, the semantics of the transactions are not considered. Then, the application-
specific trust assumptions are validated in the validation phase. Lastly, the changes are
applied to the world state in the update state phase [11].

Execute Order Validate Update_state

Figure 3.11.: Execute order validate architecture according to [11].

Therefore, each HLF chaincode consists of two distinct parts. Firstly, the smart con-
tracts which represent the business logic. Secondly, the endorsement policy which imple-
ments the application-specific trust assumptions. It is the central subject in the validation
phase. It states which organizations have to endorse which transaction (see. Sec. 3.2.2).



3. Background and Related Work 37

Next, the phases are now explained in more detail. A more detailed description can be
found in [11].

• Execution phase: The client that intends to execute a transaction forms a trans-
action proposal. This proposal includes any inputs for the chaincode function, the
identity of the client, and it specifies which function to call. Next, the client sends
their transaction proposal to all necessary endorsing peers. This set of endorsing
peers may be a subset of all peers on the channel. The endorsement policy defines
possible subsets. Importantly, endorsing peers must have the chaincode installed to
endorse transactions.

The endorsing peers receive the transaction proposal and check if the submitter
satisfies the Writers policy which authorizes them to submit transactions on the
channel. Next, the endorsing peer simulates the transaction proposal by executing
the chaincode function with the specified inputs. Importantly, the results of the
execution are not are not stored in the world state. On the contrary, the endorsing
peers create a signed proposal response that includes a readset which lists all read
keys of the world state, a writeset which lists all written keys of the world state,
the response value, and the endorsing peer’s signature. Then, the signed proposal
response is sent back to the client

Next, the client collects the necessary amount of proposal responses. In addition,
the responses are inspected by the client to check if the responses all produced the
same results. Also, HLF provides a software development kit (SDK) for Node.js and
Java which transparently executes this process for the client [11, 3].

• Ordering phase: The client assembles all necessary proposal responses into the
transaction message which it submits to the ordering service. However, if the chain-
code function did not write the ledger then a submission can be omitted, and any
further phases are omitted. Transactions that are not submitted may also be called
queries. Importantly, queries won’t be added to the blockchain and are therefore
not reliably auditable. Regardless, the ordering service establishes a total order of
all submitted transactions for each channel. The ordering service does not need
to inspect the transactions in detail to establish the order. In addition, it packs
multiple transactions into blocks. The result is a sequence of blocks where each
block is linked to its predecessor with their hash [11]. The ordering service initiates
the dissemination of the blocks to the peers. The detailed dissemination process
is described in the documentation [3]. Importantly, there is no time limit when all
peers have the same view of the blockchain. In addition, the ordering service has



3. Background and Related Work 38

the Validity property which states “If a correct client invokes broadcast(tx), then
every correct peer eventually delivers a block B that includes tx, with some sequence
number” [11]. This means that every correct peer eventually receives a transaction
once it has been sent to the ordering by a correct client.

• Validation phase: Each peer that receives a new block executes the validation
phase. It consists of the following three steps which are executed sequentially ac-
cording to [11]:

– Endorsement policy evaluation: This step evaluates in parallel all transactions.
The VSCC checks if enough endorsements are attached to the transactions so
that the respective endorsement policies are satisfied. In brief, every transac-
tion in the block is marked valid or invalid depending on the outcome of the
evaluation.

– Read-Write conflict check: This step is done sequentially for all transactions
in order. The read set of each transaction is compared with the current state
of the ledger of that peer. To elaborate, each key in the world state has
a version number. This number is a part of the read set. For example, a
transaction’s read-set contains the key color and the version 1. However, the
world sate of the peer contains the key color and the version 2. Hence, the
transaction is marked invalid and will be ignored in subsequent phases. Also,
the transactions are also marked as invalid if the keys in their read-set are a
part of the write-set of previous transactions of the same block. In brief, “this
checks whether a transaction conflicts with any preceding transaction (within
the block or earlier)” [11]. This is also known as a multi-version concurrency
check (MVCC) [3].

– Ledger update phase: The result of the prior phases and the block are appended
to the blockchain (transaction log). The results of the prior evaluations are
persisted to facilitate the reconstruction of the world state according to [11].
Furthermore, the write-sets of the transactions are applied to the world state
of the peer.

In conclusion, the novel execute order validate architecture solves the following shortcom-
ings of the order execute architecture.

1. Sequential execution: The execution of transactions does not need to happen se-
quentially. Multiple clients can invoke multiple transactions on multiple peers in
parallel. However, the read-write conflict check in the validation phase has to be se-



3. Background and Related Work 39

quential. This is beneficial to the throughput and latency of transactions according
to Androulaki et al. [11].

2. Non-deterministic code: The chaincode functions can be non-deterministic because
peers that don’t endorse don’t execute them. Hence, only the endorsing peers must
produce the same results so that the endorsement policy can be satisfied. For
instance, Table 3.9 and Figure 3.2 show the policy 1. The satisfaction of this policy
only needs one endorsement from NOBO’s peer. Hence, the smart contract can
be non-deterministic. For instance, a client may receive multiple different proposal
responses from NOBO’s endorsing peer if the smart contract is non-deterministic.
However, one endorsement is enough and the subsequent steps in the transaction
flow (see Sec. 3.2.3.2) can successfully be executed. Hence, non deterministic code
can be used in HLF.

3. Confidentiality of execution: Only the endorsing peers must execute a specific chain-
code. Hence, the chaincode must only be installed on this set of peers. The rest of
the peers on the channel need not and cannot access the chaincode code through
HLF. Therefore, the chaincodes code can be confidential and must only be shared
with the peers that are necessary to satisfy the endorsement policy. For instance,
Sec. 3.2.1.4 includes an example for this. Consequently, confidential business logic
or business processes can be implemented with confidential smart contracts with
HLF.

However, the execute order validate paradigm also introduces some new challenges. Im-
portantly, endorsement policies are very important. For they dictate which nodes must
execute transactions. Hence, weak endorsement policies may lead to incorrectly executed
transactions or strong endorsement policies may block the correct validation of new trans-
actions because some nodes may be unavailable. Further, confidentiality of execution also
has downsides. For instance, peers that don’t execute transactions have to order transac-
tions from smart contracts which these peers don’t know anything about. Chapter 6 will
further go into detail about the challenges of HLF.

3.2.3.2. Transaction Flow

Figure 3.12 illustrates a simplified example to further expand the description of the execute
order validate architecture. Four peers are illustrated. Three endorsing peers EP_1,
EP_2 and EP_3, and one committing peer CP_1 are shown. CP_1 does not have the
chaincode of the respective transaction installed. Furthermore, all peers are a part of
the same channel. Also, an arbitrary ordering service is also available. In addition, the
transaction needs 3 endorsements from all existing endorsing peers.



3. Background and Related Work 40

Endorsing Peers Committing Peer

Client

Client

EP_1

EP_1

EP_2

EP_2

EP_3

EP_3

Ordering_Service

Ordering_Service

CP_1

CP_1

Execute-Phase
1 transaction_proposal

2 verify_signature()

3 execute_transaction()

4 signed_proposal_response

5 inspect_responses()

6 assemble_endorsements()

Order-Phase
7 transaction_message

8 create_block()

Validate-Phase
9 share_block()

10 validate_transactions()

11append_to_ledger()

State-Update-Phase
12 update_world_state()

13 notify(transaction_committed)

Figure 3.12.: Sequence diagram of the transaction flow according to [3].

3.2.3.3. ACID

Härder and Reuter introduced the atomicity, consistency, isolation, durability (ACID)
principle in 1983 to describe the major highlights of the transaction paradigm [43]. It
consists of four properties that guarantee the reliability of database transactions [53].
Next, these four properties will be discussed for transactions in HLF.

1. Atomicity states that transactions must follow the all or nothing rule [53, 43]. This
means that either every change made by the transaction occurs or none occurs at all.
In HLF a transaction is sent to the ordering service and will eventually be distributed
to all necessary peers. Every peer checks if the multi-version concurrency check
(MVCC), that checks if the inputs to the transactions exist in the right version in
the world state of the peer, holds and they execute the validation system check, which
checks if enough endorsements are present(see Sec. 3.2.3.1). Based on these previous



3. Background and Related Work 41

checks the transaction is either marked valid or invalid. Nevertheless, it is always
present in the block and will always be appended to the blockchain. Regardless, the
application of the write-set is only executed if the transaction is marked as valid.
Equally important if the transaction is flagged as invalid then the write-set will
not be applied [3, 46, 11]. In conclusion, transactions in HLF can be considered
atomic. Moreover, HLF has its own mechanism that resembles a commit-protocol.
“Protocols for preserving transaction atomicity are called commit protocols” [75].
The transaction is received whenever the client sends the transaction message to
the ordering service. The transaction can be considered received whenever the
ordering service added it to a block and distributed it. Finally, the transaction can
be considered committed(aborted) whenever it has been validated(invalidated) in
the validation phase by each peer.

2. Consistency: “A transaction reaching its normal end [...], thereby committing its
results, preserves the consistency of the database. In other words, each successful
transaction by definition commits only legal results” [43]. Moreover, “a database
is consistent if and only if it contains the results of successful transactions” [43].
Section 3.2.3.1 described the process of adding successful transactions to the world
state. The last phase in the process is the update state phase. All valid transaction’s
write-sets (legal results) are applied to the world state in this phase. Hence, the
world state contains only results of successful (valid) transactions. In conclusion,
transactions in HLF are consistent.

3. Isolation: “Events within a transaction must be hidden from other transactions
running concurrently” [43]. Consequently, two different uncommitted transactions
that are executed concurrently cannot interact at all. The execution phase (see
Sec. 3.2.3.1) describes how transactions are executed in HLF. Importantly, they
are executed on the world state of a peer. To elaborate, the world state consists of
all previously executed transaction’s results. Also, transactions that are executed
(simulated) do not alter the world state. Hence, no other transaction that is executed
on the same or on other peers can read changes from transactions that are not
committed. Therefore, transactions in HLF can be considered isolated.

4. Durability: “Once a transaction has been completed and has committed its results to
the database, the system must guarantee that these results survive any subsequent
malfunctions” [43]. According to Medjahed et al. [53] this is usually achieved using
database backups and transaction logs. In HLF the ledger consists of 2 parts a world
state and a transaction log (see Sec.3.2.1.5). The transaction log consists of blocks
in which each block stores a set of transactions. This transaction log is shared and



3. Background and Related Work 42

stored on all participating peers. Each peer stores this log on its own file system
which supports the append only nature of the chain. Consequently, whenever a peer
crashes or malfunctions the world state may be lost. Regardless, all transactions are
still present in the transaction log which subsequently enables the peer to restore the
lost world state by applying the results of all transactions. More importantly, when
the transaction log of one peer is lost due to hardware failure or malicious access,
then the peer can reacquire the missing blocks from other peers through the gossip
protocol which is used to broadcast ledger and channel data. “The communication
layer for gossip is based on gRPC and utilizes TLS with mutual authentication”
[11]. It operates by peers receiving messages from other peers and then forwarding
this message to several randomly selected peers. In addition, peers may use a
pull mechanism instead of waiting for a message. Hence, even if a peer loses its
transaction log it can require it which means no transactions that were committed
are lost [3, 11, 53]. In conclusions, it can be argued that the transactions of HLF
are in fact durable.

In conclusion, the previous section shows that HLF transactions do in fact satisfy ACID,
The arguments were inspired by Medjahed et al. [53]. However, the argument for all four
properties were extended by knowledge from [3] and [11]. Further, transactions in HLF
are executed concurrently. Importantly, only their validation and the application of their
effects happens sequentially.

3.2.3.4. Considerations

Lets consider two transactions t1, t2, and a value X which is initialized with 1. The
transaction t1 assigns the value X := X + 1 and t2 assigns the value X := X − 1. In
theory if t1 and t2 were executed sequentially in any order, then the value of X would not
change. However, if the two transaction t1 and t2 are ordered in the same block in HLF
than 2 different outcomes are possible. It is assumed that the transactions were endorsed
on the same world state and the same block height.

• t1 comes before t2: t1’s readset contains the initial version of X. The read read-write
conflict check holds and t1 is marked valid. However, when t2 is checked than that
same check will fail. This is because t1 already wrote the new value for X. The
result is that the version of X is different which leads to a failure of the conflict
check. In brief, the value of X is 2 after the block has been ordered. T1 was marked
valid and t2 was marked as invalid and is ignored.

• t2 comes before t1: The value of X is 0 after the block has been order. T1 is marked
as invalid and t2 is marked as valid.



3. Background and Related Work 43

Further, the example above showed that transactions may be invalid but still be ordered
and distributed to all peers. In some cases, this may lead to lots of invalid transactions and
thus overhead which does not lead to significant changes of the world state. Importantly,
the ordering service does not filter out invalid transactions. On the contrary, only peers
decide which transactions are valid or not which may lead to a number of transactions
which are ordered and part of the blockchain but which are invalid and do not influence
the world state.
Further, [43] noted 4 different recovery mechanisms that are applicable for different

situations in traditional database systems. Now, let’s consider the “Transaction UNDO”
or rollback. “By definition, UNDO removes all effects of this transaction from the database
and does not influence any other transaction.” [43]. Let’s consider this in the context of
a HLF transaction. First, if a transaction is only proposed to a peer it does not change
the state of the database. Hence, no changes are made to the blockchain and a rollback
need not be considered. However, the changes are permanent once the transaction is
submitted for ordering and the ordering service published the new block that contained
the transaction. If the transaction is considered valid in the validation phase, then its
changes are applied to each peer’s world state. These are the effects of this transaction.
However, if the validation phase marks the transaction as invalid then its changes are
not applied. Hence, only the case were the changes are applied is considered. Khinchi
[46] argues that only an additional transaction could rollback the changes made by a
previous transaction, because the blockchain is append only. However, this is not trivial.
For instance, the effects of rolled back transactions can be read by another transaction
which would expand the set of values to be rolled back. Also, even if the values in the
world state are restored the version numbers of the keys would still change. Consequently,
rollbacks are not supported with HLF. Finally, clients, peers and the ordering service can
be configured to use transport layer security (TLS) with mutual authentication whenever
they communicate with each other. This is possible because each network component has
a certificate which it can use for mutual authentication in TLS [11, 3].

3.2.4. Private Data Collections

The private data collection (PDC) is used when one or more organizations that are a part
of the same channel (see Sec. 3.2.1.7) need to use confidential data assets that cannot be
shared with all organizations on the channel. The PDC is a key value store which only
allows the authorized subset of organizations to access the data [73]. Illustration 3.13
shows that the PDC can be seen as being part of the ledger. It consists of two parts:

• Private data: The actual private data is shared peer to peer between the authorized



3. Background and Related Work 44

P3

L3

Private Data Collection

Channel State

Figure 3.13.: Illustration of the ledger when a private data collection is used [3].

peers through the gossip protocol. The private data is then stored off the blockchain
on the authorized peers in a so-called private state database. Chaincode that is
executed on these peers can access the private data. Therefore, only organizations
with access to the PDC can endorse transactions that use data from it [73, 3].
Importantly, the ordering service does not participate in the sharing of the private
data. Hence, the ordering service cannot access the private data. However, the
private data hash will be stored on the blockchain. Thus, the existence of private
data is known to the ordering service and all of the channel’s participants.

• Private data hash: A hash of the private data is stored on the channel’s ledger
whenever data is written to the PDC [52]. A hash of the key and a hash of the
value is stored on the ledger. The result is that every member of the channel notices
the existence of transactions that involve a PDC. However, they cannot access the
private data if they are not authorized to do so. The hash can be used for auditing
and state validation [3]. For instance, the EPC stores the cabinet offer in a private
data collection. Next, the EPC sends the cabinet offer to Owner. Then, the Owner
verifies that the hash of the cabinet offer that has been sent by the EPC matches
the hash on the ledger.

Importantly, PDCs must be defined in the chaincode definition. Hence, every change
to the PDC is governed by the chaincode lifecycle (see Sec. 3.2.1.4). The following fields
are a part of the private data collection definition.

• name: The name of the private data collection.

• policy: This policy lists the organizations that can access the PDC. These orga-
nizations are called authorized organizations and their peers are called authorized
peers.



3. Background and Related Work 45

• endorsement policy: The collection level endorsement policy is defined here (see Sec.
3.2.2). It applies whenever a transaction uses keys from the PDC.

It can be argued that simply creating a whole separate channel can have a similar
effect in some cases. However, the documentation [3] suggests that there is a considerable
administrative overhead to creating separate channels. For instance, maintaining MSP’s,
configuring policies, and deploying chaincode are time consuming activities. Also, the
ordering service may have access to the ledger data of multiple channels. However, the
ordering service cannot access the data in PDCs. On the other hand, every organization
in the channel notices when transactions involving PDCs occur. Complementary to this,
channels hide the transactions from organizations that are not a part of the channel
[3]. According to Ma et al. [52] channels are best suited when the whole ledger and
all transactions between a subset of organizations must be kept confidential from other
organizations. Then, PDCs should be used when the occurrence of transactions needs to
be shared among all organizations of the channel, but only a subset needs to have access
to the transaction’s data.

3.2.4.1. Private Data Transaction Flow

The standard transaction flow that is described in the Sec. 3.2.3 differs when a private
data collection (PDC) is involved. Figure 3.14 illustrates a simplified sequence diagram
of this slightly altered transaction flow with PDCs.

• Execute phase: The client submits the transaction proposal. But any private
data should be sent with the transient field which is a special field in the transaction
proposal. It is used to send private data to the peer. Importantly, this special field is
not included in the final on-chain transaction [3]. Hence, the private data will not be
a part of the blockchain (transaction log). A peer that can endorse this transaction
is called an authorized endorsing peer (AEP). They are authorized to access the
PDC and they have the chaincode installed. Hence, these peers can access the PDC
and subsequently endorse transactions. Figure 3.14 illustrates 3 of these AEPs. In
this example only the endorsement of the peer AEP_1 is needed. Further, the client
sends the peer the transaction proposal. Next, the peer simulates the transaction
and produces a read-set, write-set and a return value. In addition, the changes
to the PDC are recorded in the transient data store. It temporarily stores the
changes made to the private data collection by uncommitted transactions. It is
purged once the transaction is validated. Also, the entries of the transient data
store are disseminated to other authorized peers via gossip by AEP_1. Lastly, the



3. Background and Related Work 46

A
ut

ho
riz

ed
 E

nd
or

si
ng

 P
ee

rs
N

on
 A

ut
ho

riz
ed

 P
ee

rs

C
lie

nt

C
lie

nt

A
E

P
_1

A
E

P
_1

A
E

P
_2

A
E

P
_2

A
E

P
_3

A
E

P
_3

O
rd

er
in

g_
S

er
vi

ce

O
rd

er
in

g_
S

er
vi

ce

C
P

_1

C
P

_1

E
P

_4

E
P

_4

1
tra

ns
ac

tio
n_

pr
op

os
al

2
ex

ec
ut

e_
tra

ns
ac

tio
n(

)

3
tra

ns
ie

nt
_d

at
a_

st
or

e.
st

or
e(

pr
iv

at
e_

da
ta

)

4
go

ss
ip

(p
riv

at
e_

da
ta

)

5
si

gn
ed

_p
ro

po
sa

l_
re

sp
on

se

6
tra

ns
ac

tio
n_

m
es

sa
ge

(H
as

h(
pr

iv
at

e_
da

ta
))

7
cr

ea
te

_b
lo

ck
()

8
sh

ar
e_

bl
oc

k(
)

9
pu

ll(
pr

iv
at

e_
da

ta
)

10
go

ss
ip

(p
riv

at
e_

da
ta

)

11
va

lid
at

e(
pr

iv
at

e_
da

ta
,h

as
h)

12
pr

iv
at

e_
da

ta
_s

to
re

.s
to

re
(p

riv
at

e_
da

ta
)

13
tra

ns
ie

nt
_d

at
a_

st
or

e.
de

le
te

(p
riv

at
e_

da
ta

)

14
tra

ns
ac

tio
n 

co
m

m
itt

ed

A
ct

or
s

A
E

P
A

ut
ho

riz
ed

 E
nd

or
si

ng
 P

ee
r

C
P

C
om

m
itt

in
g 

P
ee

r

Fi
gu

re
3.
14
.:
Se
qu

en
ce

di
ag
ra
m

of
th
e
pr
iv
at
e
da

ta
tr
an

sa
ct
io
n
flo

w
ac
co
rd
in
g
to

[3
].



3. Background and Related Work 47

peer creates the proposal response and sends it back to the client. Also, the proposal
response includes the hashes of the private data.

• Ordering phase: The client gathers enough endorsements. In this example the
endorsement from AEP_1 satisfies the endorsement policy. Next, the client submits
the transaction to the ordering service. This part is identical to the phase that is
described in Sec. 3.2.3.1.

• Validation phase: This phase works analog to the description in Sec. 3.2.3.1.
However, there is one addition. Peers check the collection policy whether they are
authorized to have access to the PDC when a transaction includes private data.
For example, AEP_2 has already received the private data from AEP_1 in the
execution phase. However, AEP_3 notices that it does not have the private data in
its transient data store. Thus, it requests the data from another authorized peer.
In this case AEP_1. Next, authorized peers update their private state database and
then they delete the data from the transient data store. Peers that do not have
access to the private data like the committing peer CP_1 and the endorsing peer
EP_4 only validate and then commit the write sets of to their world state.

3.2.5. Policies

The governance of a HLF network is configured through policies. Figure 3.8 shows an
example of a channel. The policies are stored in the channel configuration (CC). The
following section briefly defines how policies are structured, used and changed. For in-
stance, a policy dictates who is a part of the channel, who are the OSNs of the ordering
service, and how chaincodes are deployed on a channel. In brief, each value in the CC
is governed by so called groups. Figure 3.15 shows a simplified class diagram of groups.
Three important groups are detailed below [3]:

1. Application group: This groups governs the participants of the channel. For in-
stance, the addition, removal, or modification of channel members is governed by
this group. Also, the following important policies are defined within this group:

a) Endorsement: This important policy represents the default endorsement policy
that is used when no specific endorsement policy is set up for a chaincode in its
definition (see Sec. 3.2.1.4). In brief, it specifies which signatures are needed
for a default chaincode transaction.

b) Writers: This policy defines what kind of signatures are needed for a valid
transaction proposal. The peer that receives a transaction proposal (see Sec.



3. Background and Related Work 48

Group

String : mod_policy

Policy

String : mod_policy
String : policy_name

Value

String : mod_policy

ImplicitMeta

String quantifier
String sub_policy

Signature

Rule : rule

Identity

String msp_identifier
String role

identities

1

+

groups

1

*

policies

1

*

values* 1

Figure 3.15.: Simplified class diagram of structure of configurations [3].

3.2.3) checks if the signatures that are provided with the proposal satisfy this
policy.

c) Admins: This policy is used to govern the changes to the CC itself. For in-
stance, it governs how many signatures are needed when the CC is altered.
The result is that new channel members can be added with this policy. Im-
portantly, this is only the default configuration in the test network and in the
tutorial [3]. Further, all changes can be governed by other policies which means
that this can be changed. The result is that the governance of the CC is highly
customization and distributed.

d) Lifecycle Endorsement (see Sec. 3.2.1.4) is defined in this group. This policy
is used to check that enough channel members have approved a chaincode’s
definition before it can be deployed. The default is that most channel member’s
administrators need to approve a chaincode definition before it can be deployed.

2. Orderer group: This group governs the configuration regarding the ordering service
of the channel. It specifies the OSNs, the consensus algorithm that is used, and the
details regarding the consensus algorithm. For instance, values like the maximum
transaction count per block and the decision to use Raft or Solo can be defined in
this groups.

3. Channel group: It is the top hierarchy, and it contains the Orderer and Application
group. It specifies the orderer addresses which clients use to send their transac-
tion messages and the hashing algorithm which is used to chain blocks to their
predecessors. Importantly policy groups are set up hierarchical see Fig. 3.16.

Figure 3.15 illustrates the composition of these configurations. The central component is



3. Background and Related Work 49

the group. A group may contain multiple other groups. It is not possible to form a circle.
The result is a directed acyclic graph (DAG) of groups which may be called a group tree
or configuration tree. The groups that have no subgroups are called the leaves of the tree.
Each group has a list of values which may or may not be empty. These values are used
to store specific configuration values. For instance, the Orderer group contains the value
Consensus Type which is used to store data regarding the consensus model. In the Raft
implementation it stores the consent set. This is the list the ordering service nodes which
are actively participating in the Raft protocol (see Sec. 3.1.2). Further, a group may
contain policies. Policies are used to specify a set of signatures. Each policy has a name
and a type. Either the policy is a Signature policy or an implicit-meta policy.

• The signature policy specifies a list of concrete identities and a rule. The identities
contain a msp_identifier and a role. The msp_identifier specifies the organization
and the role the organizational unit within that organization. Admin, Client, Or-
derer, and Peer are default organizational units. Member refers to every unit. This
allows more granular access control for organizations. Section 3.2.2 shows examples
for Signature policies in the form of endorsement policies.

• The implicit-meta policies are evaluated based on the current configuration tree.
Importantly, these implicit policies may change whenever new members are added
to channels or more ordering organizations are added. The result is that smartly
crafted implicit-meta policies can reduce the needed effort whenever new members
are added. In brief, the evaluation of implicit-meta policies follows the configuration
tree and results in concrete signature policies that are required.

Channel/Admins

Channel/Application/Admins Channel/Orderer/Admins

Channel/Application/EPC/Admins Channel/Application/Supplier/Admins Channel/Application/EPC/Admins

Hierarchy

Implicit Meta

Signature

Majority "Admins"

role = Admin and org = EPC role = Admin and org = Supplier

Majority "Admins" Majority "Admins"

role = Admin and org = EPC

Figure 3.16.: Illustration of an example for implicit meta and signature policies according
to [3].

Figure 3.16 illustrates a simplified tree. The implicit-meta policy with the name Admins
in the group Channel should be evaluated. The policy states "Majority Admins". The



3. Background and Related Work 50

quantifier is "Majority". For the sake of completeness, the "All" and "Any" quantifiers also
exist. However, the policy states that a majority of the sub policy must be satisfied. The
sub_policy is Admins. The result is that the policies called Admins in the groups that are
a part of the channel group must be evaluated. The Application and the Orderer group
are subgroups of the Channel group. The Application group also defined a policy named
Admins. This policy also states "Majority Admins". The EPC and Supplier groups are
subgroups of the Application. They both have a policy named Admins defined. However,
this time the policies are not are not implicit-meta policies. They both have signature
policies. The policy in the EPC’s Admins group requires a signature of an admin of the
EPC. The policy in the Supplier’s Admins groups requires a signature of an admin of
the Supplier. The result is that to satisfy the Channel/Admins policy 2 signatures are
needed. An Administrator of the EPC and the Supplier is needed.
Further, the configuration tree is not static, and it can be modified. The mod_policy or

modification policy is a part of the Policy, Value and, Group. This policy governs which
entities need to sign a proposed configuration update. For a more detailed description of
the process that updates the channel configuration please refer to [3, 5]

3.3. Zero Knowledge Proof

A zero-knowledge proof (ZKP) is a cryptographic protocol. It usually involves two partic-
ipants the prover and the verifier. The prover wants to prove to the verifier that a given
statement is true. Importantly, no information except that the proof is correct can be
extracted from such proofs [24, 40]. An in-depth description of the mathematics behind
ZKP’s can be found in [39, 17, 20]. Consequently, a ZKP can be useful when handling
confidential data that are used in smart contracts. For instance, when an input for a smart
contract must remain confidential than it is not possible to distribute this input to other
unauthorized nodes of the blockchain network for recomputation. However, a peer that
is authorized to view the private input could compute the smart contract function and
then provide a proof of the correct execution to the other nodes with the use of a ZKP.
In HLF endorsement policies already limit the number of peers that need to compute a
smart contract function. However, the committing peers must trust the endorsements.
This is where a ZKP could remove this required trust in the peer and replace it with the
trust in the mathematics behind the proof.
Recent advances in the cryptographic notably from [20] saw the development of

ZK-SNARKs (see Sec. 3.3.1) and ZK-STARKs (see Sec. 3.3.2) both of which are ZKPs.
Both approaches may lead to improvements to blockchains in regard to privacy and scal-
ability [20]. Both techniques can be categorized as universal proof compilers. In brief, a



3. Background and Related Work 51

proof can be generated for any arbitrary program written in a general purpose language
[17]. Hence, the applicability of such proofs is not limited to hand crafted special use
cases, and they can be applied to a far broader field. Importantly, the mathematical
intricacies are not the focus. Rather, the possible application in regard to blockchain is
analyzed.
In brief, endorsements could be enhanced with a proof of the correct execution of a smart

contract. Currently HLF allows for a multitude of endorsement policies. For instance,
endorsement policies where only one endorsement is necessary are possible. Importantly,
how can other peers trust that the endorsed transaction is actually the result of a smart
contract invocation? Barbara [17] calls this a computational integrity and privacy (CIP)
problem statement. In this context computational refers to the fact that the system should
handle any general-purpose computation. Integrity is the property that the output of the
computation must be somehow bound to the computation itself. Privacy is the last
property. It means that the output and the computation itself can be revealed but the
input itself remains private. In brief, some ZKPs offer a solution to these problems.
Further, Sec. 3.3.3 shows how a ZKP is used in HLF already to provide more anonymity
for transactors. Lastly, 3.3.4 concludes whether this technology is applicable for the use
case or not.

3.3.1. ZK-SNARK

This section briefly outlines ZK-SNARKs. A more technical view can be found in [36, 20].
The zero-knowledge succinct non interactive argument of knowledge (ZK-SNARK) was
published by Ben-Sasson et al. in the year 2013 [20]. It allows the verification of a NP
statement by an untrusted computationally bound prover. NP problems are “the class
of problems recognized by nondeterministic Turing machines which run in polynomial
time” [48]. The generated proof is publicly verifiable without further interaction with
the prover. Importantly, ZK-SNARKs need a setup phase that is carried out by a trusted
third party. This party generates a verification key and a proving key. The published
paper focused on verifying the correct computation of a program written in the general-
purpose language C [20].
Consequently, a smart contract could be written in C and a trusted third party could

provide a proving and verification key. Further, this proof could be used by other peers on
the HLF network to verify the correct execution of a smart contract. However, the codes
of chaincodes is not required to be published to every peer of a channel (see Sec. 3.2.1.4).
Thus, this would have to change for peers to be able to verify the computation. The non-
interactive property also means that the proving peers need not be available to conduct



3. Background and Related Work 52

the verification. Further, the ability to prove correct execution in zero-knowledge, enables
that some inputs for smart contracts can remain confidential. Further, ZK-SNARKs have
been employed in combination with Bitcoin to implement a decentralized mix [21].
To sum up, although the capabilities of ZK-SNARKs are interesting and potentially

could solve some requirements from Sec. 2.3 the maturity and the ability to combine it
with HLF is uncertain. Further, ZK-SNARKs are not mentioned in the documentation as
of writing this thesis. In conclusion, ZK-SNARKs cannot be used for this thesis’s solution,
whereas they could be an integral part of blockchain’s in the future.

3.3.2. ZK-STARK

A more recent publication of Ben-Sasson et al. from the year 2018 saw the release of a
new zero knowledge proof system [22]. The new proof system is called zero-knowledge
scalable transparent argument of knowledge (ZK-STARK). Interestingly, the proposed
method is post quantum secure. Consequently, it is secure even if large scale quantum
computers exist. The following section will only outline its general properties and gauge
its applicability for HLF. A more detailed description of the intricacies of ZK-STARKs
can be found in [22]. Nevertheless, a ZK-STARK is different from ZK-SNARKs in that
there is no need for a trusted setup. Further, ZK-STARK is an interactive protocol.
However, a non-interactive version can be produced if the existence of collision-resistant
hash functions is assumed, according to Giuffra [39, 32, 22]. However, a non-interactive
implementation was not available as of writing this thesis. Additionally, an academic
grade open source implementation of ZK-STARKs is available [7]. It is written in C++
and thus not usable by HLF chaincodes out of the box (see Sec. 3.2.1.3). However,
Benhamouda et al. [23] (see Sec. 3.5.2) already used a C++ library successfully within a
go chaincode. Further, the interactive nature of the proof introduces assumptions about
the availability of peers. Therefore, such availability assumptions might proof difficult to
satisfy.
In conclusion, ZK-STARKs are an interesting new technology that could be used to

substitute or enhance endorsements in HLF. However, the existing implementation is
not production ready and incompatible with HLF’s supported languages. Further, the
interactive nature of the proof might prove to be a challenge. For now, this technology
cant be used for this thesis’s approach, however future developments might make it an
integral part of blockchains.



3. Background and Related Work 53

3.3.3. Idemix

Further, HLF can use ZKP’s to hide the transactor of transactions. The technical details
are described in [12, 3]. Normally each transactor possesses their own certificate, and
whenever this transactor sends transaction proposals they include this certificate and
they use it to sign the transaction proposal (see Sec. 3.2.3). The result is that the specific
certificate is linked to the transaction. For instance, this could allow other organizations
to distinguish different employees of an organization. This might not be desirable in some
circumstances. The solution to this problem can be idemix. The idemix cryptographic
protocol suit can achieve anonymity, meaning transactions cannot be linked to the
identity of the transactor and unlinkability, which enables the execution of multiple
transactions without revealing that they were sent by the same transactor.
In brief, the transactions can only be linked to the organization rather than to indi-

vidual employees and their certificates. Further, it is implemented as a supplementary
membership service provider (MSP) (see Sec. 3.2.1.6), and can only be used to execute
transactions but not to endorse transactions [3].

3.3.4. Conclusion

In conclusion, ZK-SNARKs and ZK-STARKs are interesting technologies that could be
used in the future to supplement and improve the endorsement process of HLF’s trans-
action flow. However, the usage poses significant challenges which are deemed too risky
for this thesis. Further, idemix provides a means to hide transactors and only reveal the
organizations that they are a part of. However, the requirements of Sec. 2.3 don’t need
this. Consequently, an idemix MSP is not used.

3.4. Homomorphic Encryption

“Homomorphic encryption is the encryption of plaintext to ciphertext while enabling
the analysis as if it were plaintext. Mathematical operations such as multiplication and
addition can be performed on the ciphertext. In mathematics, homomorphic means the
transformation of one data set to another while preserving the relationships between both
elements in the sets”[51]. Bernabé et al. conclude that the maturity of homomorphic en-
cryption (HE) is high [24]. Further, Bagdasaryan et al. already used HE in combination
with blockchain to provide an access control layer for patient’s medical health records.
However, they only use partially homomorphic encryption (PHE) which means that they
were limited to multiplication operations [15]. PHE allows one operation either addition
or multiplication to be performed on the ciphertext without limitations to the number



3. Background and Related Work 54

of operations. Further, somewhat homomorphic encryption (SWHE) allows different op-
erations to be applied to the ciphertext. However, limitations apply to the number of
times each operation can be used. Lastly, fully homomorphic encryption (FHE) combines
the advantages of PHE and FHE in that an unlimited amount of any operation can be
applied without limitations to the number of operations [10]. Consequently, FHE could
be used to provide confidential data that is encrypted to a smart contract. The result is
that the computation could be replicated on multiple nodes. However, the nodes need
not have access to the data to complete the computation. The result is that the addition
of FHE could play an important role within HLF. The endorsement policies, private data
collections, and channels reduce the amount of organizations that confidential data is
exposed to. However, FHE could enable the processing of confidential data by unautho-
rized organizations while simultaneously maintaining the confidentiality of data assets.
Sec. 3.4.1 will introduce examples where HE has been used in combination with HLF.
Further, Section 3.4.2 will show how HE could be included in HLF chaincodes. Finally,
Sec. 3.4.3 will conclude if this technology is applicable for this thesis’s approach.

3.4.1. HE and Hyperledger Fabric

Importantly, Hyperledger Fabric does not mention HE in its documentation [3]. Never-
theless, multiple papers have been published that use HLF and some form of HE. For
instance, Chen et al. have shown how privacy related data of citizens can be stored on the
blockchain [33]. They used the Paillier algorithm which is an asymmetric homomorphic
encryption algorithm [61]. However, it only support addition which means it is only PHE.
Nevertheless, the privacy related data such as height, age, and gender were stored as in-
tegers. Consequently, statistics such as the average age or gender ratio of the citizens can
be calculated. For instance, the encrypted heights of all citizens could be summarized.
Next, this sum could be decrypted and divided by the number of citizens. The result
is the average height. Importantly, this average can be calculated without revealing the
height of an individual citizen. The implementation details were omitted in the paper
which makes an adoption more difficult [33]. Then again, it shows that HE and HLF can
be used together.
Further, Ghadamyari and Samet used a similar approach [38]. They proposed a novel

solution that enables the statistical analysis of patient’s private health data. The authors
also used the Paillier algorithm which was employed by [33]. Their solution involved
off chain key generation, the homomorphic combination of different results with smart
contracts, encrypted storage of results on chain and access control using access control
lists. Further, they used a preexisting java script library for the Paillier algorithm [38].



3. Background and Related Work 55

Consequently, the authors demonstrated that javascript based chaincodes can be used for
HE.

3.4.2. Using HE

The ability of HLF to use various general-purpose languages to implement smart contracts
enables it to use preexisting libraries for HE (see Sec. 3.2.1.3). A paper from the year
2017 surveyed 6 general purpose libraries HE which were written in C and C++ for [31].
Further, Brenner et al. mention that HE is built around the low-level circuits which

can be compared to programming in assembly language [26]. Further, they describe a
possible programming model in which the application developer writes their algorithm in
a high-level programming language and then relies on a compiler to produce a so-called
homomorphic encryption assembly language [26]. This has not been used in combination
with HLF as of writing this thesis.
Lastly, Microsoft SEAL is an open source fully homomorphic encryption (FHE) library

written mostly in C++. It supports additions and multiplications on integers or real num-
bers. Other operations like sorting or comparisons are possible but deemed not feasible
[69]. Considering the implementation in C++ and the lack of publications that use both
HLF and Microsoft SEAL it can be concluded that a practical usage of HE with SEAL
poses a significant challenge.

3.4.3. Conclusion

In brief, HE has been used in combination with HLF in an academic setting. The usage
of a production ready library in combination with HLF has yet to be discovered. In addi-
tion, the use case that is introduced in Sec. 2.1 does not involve statistical analysis of the
shared artifacts which has been shown to work in combination with HLF [33, 38]. Fur-
ther, the programming model introduced by Brenner et al. [26] could be used to compile
smart contracts that work with confidential data into a homomorphic encryption assem-
bly language which could be executed on the blockchain while preserving confidentiality.
However, this has not been done before with HLF. Consequently, this is deemed too great
of a risk and further investigations in this direction were omitted.

3.5. Secure Multiparty Computation

“Protocols for secure multiparty computation (SMPC) enable a set of parties to interact
and compute a joint function of their private inputs while revealing nothing but the
output” [49]. Also, the abbreviation MPC is also used according to Lindell. Importantly,



3. Background and Related Work 56

the joint function must be agreed upon by the participants [37]. Therefore, the function
must be visible to all participants. The technology was first introduced by Yao [82] in
the year 1982 where he solved the problem of two millionaires who wanted to ascertain
who is the wealthiest among them without revealing their wealth to each other. Basically,
secure multiparty computation (MPC) processes data that is protected by encryption
or a similar method. Protocols that can handle turing-complete languages for the joint
function are also called programmable MPC protocols according to Archer et al. [13].
These protocols are the focus of this section because they might be able to handle the
joint execution of smart contracts who are written in general purpose languages. The
difference between MPC and HE is that in the former everyone is a data owner that
participates in the execution protocol whereas the latter has only one data owner and a
different party executes the function [37]. Importantly, HE can be used if the function
must remain private. In comparison, the joint function must be distributed to all data
owners in MPC. Next, Sec. 3.5.1 will review Enigma which uses MPC in combination
with blockchain. Lastly, Sec. 3.5.2 will show how MPC is used in combination with HLF.

3.5.1. Enigma

Enigma sets out to be a decentralized computing platform with guaranteed privacy with-
out a trusted third party. It is similar to Ekiden (see Sec. 3.1.5.4) in that it enables the
verification of computations without disclosing private inputs. Importantly, MPC does
not require trust in a third party like the trusted execution environment (TEE) software
guard extension (SGX) that Enigma uses (see Sec. 3.5.1). In brief, private data is split
into multiple shares and then distributed to various nodes. The process is also known
as secret sharing. Secret sharing is a threshold cryptosystem. A secret s is divided into
n shares and distributed to n parties. The original secret s can only be reconstructed if
at least t shares are combined. If less, then t shares are combined no intelligible result
can be obtained. This threshold cryptosystem has been introduced by Shamir in the year
1979 and is also known as Shamir secret sharing [72, 45]. Further, these shares retain
homomorphic properties. Meaning arithmetic circuits can be evaluated on these shares.
Further, the recombination of the evaluated shares yields the same result as if the arith-
metic circuit were evaluated on the original values [45]. Importantly, there exists a great
variety of MPC algorithms which cannot be analyzed in this thesis. Archer et al. provides
an overview of different MPC algorithms [13]. Nevertheless, Enigma uses this technology
to outsource the computation for smart contracts to so called computing nodes. These
nodes each get a share of the private inputs and the smart contract code is in the form
of an arithmetic circuit. Consequently, the private inputs are safe as longs as less than



3. Background and Related Work 57

t nodes are malicious. Further, the number of computation nodes can be much smaller
than the number of participants. This could potentially reduce the amount of computa-
tion that has to be done because not every participant has to recompute each transaction.
This may reduce resource consumption and enables more extensive computations in smart
contracts [85].

Conclusion The paper from Zyskind et al. [85] which describes Enigma also provides
performance improvements for MPC. Yet, actual benchmarks or sample implementations
are omitted. Therefore, any assumptions about restrictions and possible use cases are
infeasible on this basis. In 2020 Zyskind wrote a blog post about the future of enigma
[84]. This future will focus on TEE instead of MPC. The possible future addition of MPC
was only briefly hinted at. In brief, Enigma provides an interesting concept of how MPC
can be used to implement smart contracts which work on private data.

3.5.2. HLF and SMPC

Benhamouda et al. explored the possibility of adding MPC to HLF version 1.1 [23]. Their
work focused around storing encrypted private data on chain. This data would be pro-
cessed with MPC whenever the transaction used that private data. Their paper described
a demo implementation where a seller could list assets with a reserve price. Buyers could
publish their private bids on chain. In addition, a smart contract was implemented that
used a MPC protocol. To elaborate, a symmetric encryption was done by so called priv-
ileged clients of each buyer before including the data in the proposal. The private data
collections introduced in Sec. 3.2.4 where first included in version 1.2. Hence, the authors
could not have taken advantage of this feature and had to rely on symmetric encryption.
The MPC implementation used the EMP-toolkit that is written in C++. To support the
usage of the C++ library in smart contracts that are written in Go the authors opted to
use the simplified wrapper and interface generator (SWIG) which automatically creates
the bindings between C or C++ and other common programming languages including Go.
Furthermore, the authors had to alter the Fabric SDK and include a customized build
environment which included SWIG and the EMP-toolkit. Importantly, the MPC proto-
col requires communication between the computing peers during its execution. However,
HLF does not enable the communication between peers that execute chaincodes out of the
box. Consequently, the authors added a helper server to facilitate this communication.
Importantly, the client that triggers the auction must propose the transaction to all buy-
ers and the seller as they need to communicate with each other during the endorsement
process. In addition, a local configuration was added to the peers to enable the storage



3. Background and Related Work 58

of the symmetric keys used to decipher the encrypted private data. The authors are cur-
rently working on implementing MPC for HLF although as of April 2021 no additions are
mentioned in the documentation [23, 3, 19]. In conclusion, it is possible to use a MPC
protocol in combination with HLF through the addition of multiple components. How-
ever, no implementation is published as of writing the thesis. Therefore, this approach
cannot be used for this thesis.

3.6. Trusted Execution Environments

A “trusted execution environment (TEE) is a tamper resistant processing environment
that runs on a separation kernel. It guarantees the authenticity of the executed code,
the integrity of the runtime states (e.g. CPU registers, memory and sensitive I/O), and
the confidentiality of its code, data and runtime states stored on a persistent memory. In
addition, it shall be able to provide remote attestation that proves its trustworthiness for
third parties. The content of TEE is not static; it can be securely updated. The TEE
resists against all software attacks as well as the physical attacks performed on the main
memory of the system. Attacks performed by exploiting backdoor security flaws are not
possible” [65]. Consequently, a TEE can be used to execute code and verify its correct
execution. For instance, smart contracts could be executed inside a TEE and the correct
execution and results could be attested to on the blockchain. In addition, private inputs
could be provided to the TEE which would enable confidential inputs to smart contracts
while the computation takes place on an untrusted node. Section 3.6.1 introduces an
implementation of a TEE. Next, Sec. 3.6.2 presents a paper where HLF and TEE are
used in combination. Finally, Sec. 3.6.3 provides a conclusion.

3.6.1. Software Guard Extension

The software guard extension (SGX) is an implementation of a TEE from Intel [83]. SGX
enables computational integrity and confidentiality for security-sensitive computations.
This is especially useful if privileged software such as hypervisor or kernel are potentially
malicious [35]. Hence, it is useful for blockchains where nodes are untrusted and the
trustworthiness of the kernel or hypervisor cannot be assumed.
Further, SGX uses so called enclaves which are secure containers which contain private

data and code which is executed. Importantly, the code and data inside the enclaves
cannot be tampered with. For this reason, the CPU produces a cryptographic hash called
mrenclave. It is computed with the code and data that has initially been loaded into
the enclave. Also, the enclave can prove that a specific application and data is loaded.



3. Background and Related Work 59

This process is called remote attestation. A user with prior knowledge of the mrenclave
sends a challenge to the enclave which returns a proof which is called attestation report.
The user forwards this report to the Intel attestation service (IAS) which verifies it using
enhanced privacy ID (EPID) group signatures which are described in [27] and responds
with the result. Further, SGX enclaves support a mechanism to recover the internal state
of an enclave. Basically, data is encrypted before it leaves the enclave with keys that are
only available to the enclave itself [25, 83]. The prior description only briefly outlines
the concepts of SGX. A more detailed description is omitted as an extensive portrayal of
SGX can be found in an article from Costan and Devadas [35].

3.6.2. TEE for Hyperledger Fabric

Brandenburger et al. investigated the possibility of using the TEE from Intel SGX in
combination with HLF [25]. In brief, they implemented a sealed bit auction where only
a trusted auctioneer can learn all the bids to evaluate a winner. The authors introduced
four new components to HLF because it does not support TEE out of the box [3, 25].

• Chaincode enclave: It is the enclave that executes a chaincode. A chaincode library
acts as intermediary between the enclave and the endorsing peer.

• Ledger enclave: This enclave maintains the ledger with additional integrity-specific
metadata that represents the most recent blockchain state. The chaincode enclave
uses this enclave to verify the correctness of the data retrieved from the blockchain
state.

• The enclave registry is a list of all existing chaincode enclaves. It enables peers and
clients to first inspect attestations of enclaves before invoking chaincode operations
or committing state changes.

• Enclave transaction validator: It is responsible for validating transactions produced
by the chaincode enclaves. Specifically, it checks if the transactions were produced
by registered chaincode enclaves.

Next, the chaincode execution is briefly summarized. A client sends a invoke chaincode
proposal to a peer. The peer forwards the proposal to the responsible chaincode enclave.
The enclave evaluates the proposal and returns a response back to the client. Further,
the client uses remote attestation to make sure it is communicating with the chaincode
enclave. The client can now encrypt the actual transaction proposal and send it to the
peer which hands it to the chaincode enclave. Importantly, only the chaincode enclave
can decrypt the transaction proposal. Also, the client can provide a encryption key with
the transaction proposal which can be used by the enclave to encrypt the transaction



3. Background and Related Work 60

response. Next, the client decides if it wants to submit the transaction to the ordering
service after it received the proposal response from the chaincode enclave. This process
is analog to the standard transaction flow (see Sec. 3.2.3.1). The ordering service assigns
the transaction to a block and broadcasts the block to all peers. The validation step is
extended. It now checks if the transaction was produced by the correct chaincode enclave
and updates the blockchain state accordingly. An in-depth analysis of this process is
provided in [25]. In brief, the committing peers can now verify that the transactions were
actually the results of smart contract executions. Consequently, a manipulation of the
proposal responses by malicious peers is not possible anymore.

3.6.3. Conclusion

SGX aims to protect the confidentiality of computations and data inside the enclave from
software attacks and a limited set of physical attacks. However, Costan and Devadas
[35] state that their security analysis revealed that a security conscious software devel-
oper cannot in good conscience rely on SGX for secure remote computation. Among other
vulnerability physical attacks, privileged software attacks, memory mapping attacks, soft-
ware attacks on peripherals, cache timing attacks and software side-channel attacks, are
possible according to [35]. A detailed survey of these attacks is out of the scope of this
thesis. Further, the evaluation of [25] showed that the combination of SGX and HLF
produced an overhead of no more than 20% compared to an unsecured implementation.
Nevertheless, the results have not been included in HLF as of version 2.2 [3]. Conse-
quently, there is no known implementation of HLF which utilizes TEE. Thus, it cannot
be considered for this thesis.



4. Proposed Design - Fabrication Stage

This chapter will lay out the general concept for an abstract multilateral distributed use
case. Importantly, the concept is realized as a design for the fabrication stage use case
that was introduced in Chap. 2. First, Sec. 4.1 provides an overview of the concept
for the fabrication stage use case. Next, the separation of the workflow into different
smart contracts will be detailed in Sec. 4.2. Then, Sec. 4.4 introduces formal description
of a multilateral workflow and outlines a general solution. Further, Sec. 4.3 will detail
the structure of the HLF channels. Also, Sec. 4.5 will establish the ordering service’s
structure for the channels and discusses their advantages and disadvantages. Lastly, Sec.
4.6 will present the detailed process flow and lists all interactions that happen between
the smart contracts and the actors.

4.1. Overview

«person»

Owner

Orders a cabinet.

«person»

EPC

Builds a cabinet.

«person»

Supplier 1 (S1)

Builds a pressure sensor.

«person»

Supplier 2 (S2)

Builds parts which are not
necessery for the cabinet.

«person»

NOBO

Evaluates the cabinet's
specification.

«system»

Workflow System

Coordinates the work flow
between the actors. Provides
an audit trail of their actions.

uses usesuses usesuses

Figure 4.1.: Context diagram for the Workflow System.

Figure 4.1 shows that 5 different actors interact with a workflow system. The owner
will own the cabinet, the EPC will build the cabinet, the supplier 1 will built a pressure
sensor that will be integrated into the cabinet, the supplier 2 is not directly involved in the
cabinet’s production, and NOBO will certify that the cabinet that was produced actually
satisfies its requirements. The workflow system is the central system which orchestrates
the workflow between the various actors. Further, it stores the relevant data assets,
enforces access control according to the access control list (see Tab. 2.1), it enforces that



4. Proposed Design - Fabrication Stage 62

the specific steps in the workflow can only be triggered by authorized organizations, and
it will provide an audit trail.

«boundary»

Workflow_System
[System]

«external_container»

Desktop-Application
[Java, fabric-gateway-java]

Provides the relevant
functionality to NOBO's

employees.

«external_container»

Desktop-Application
[Java, fabric-gateway-java]

Provides the relevant
functionality to EPC's

employees.

«external_container»

Desktop-Application
[Java, fabric-gateway-java]

Provides the relevant
functionality to Supplier 1's

employees.

«external_container»

Desktop-Application
[Java, fabric-gateway-java]

Provides the relevant
functionality to Supplier 2's

employees.

«external_container»

Desktop-Application
[Java, fabric-gateway-java]

Provides the relevant
functionality to Owners's

employees.

«container»

Blockchain Network
[Hyperledger Fabric]

«person»

Owner

Orders a cabinet.

«person»

EPC

Builds a cabinet.

«person»

Supplier 1 (S1)

Builds a pressure sensor.

«person»

Supplier 2 (S2)

Builds parts which are not
necessery for the cabinet.

«person»

NOBO

Evaluates the cabinet's
specification.

Uses
[TLS]

Uses
[TLS]

Uses
[TLS]

Uses
[TLS]

Uses
[TLS]

Uses Uses Uses Uses Uses

Figure 4.2.: Container diagram for the Workflow System.

Next, Figure 4.2 illustrates the containers that make up the workflow system. Impor-
tantly, in this context container is used to describe code running on some computing node.
The most important part is the Blockchain Network for which Hyperledger Fabric (HLF)
is used. In addition, the five external containers represent the client applications which
each organization will be using. Further, Figure 4.2 shows Desktop Applications which
represent an example and any frontend such as mobile applications or, web applications
can be used. Nevertheless, these applications can leverage the fabric software develop-
ment kit (SDK) to interact with HLF. The SDK is available for Java and Node.js for HLF
version 2.2 [3]. Importantly, the SDK is used to trigger transactions in the blockchain
network and evaluate queries to smart contracts. This simplifies the implementation for
the client applications because they don’t have to implement the communication with the
peers from scratch. Also, the communication with the blockchain components is secured
with TLS.
Figure 4.3 illustrates the logical components, of the HLF networks. The focus of the

illustration is the logical structure of the network. In particular, the network is separated
into 5 logical components. Importantly, these are logical components and the physical
deployment will be described in Sec. 4.3. The logical components are:

• Smart Contracts: 3 different smart contracts were created.



4. Proposed Design - Fabrication Stage 63

«boundary»

Blockchain Network
[System]

«container»

Sensor_Contract
[javascript chaincode]

Manages the sensor order,
transfers relevant data assets.

«container»

Cabinet_Contract
[javascript chaincode]

Manages the cabinet order,
transfers relevant data assets.

«container»

Evaluation_Contract
[javascript chaincode]

Manages the evaluation
request, transfers relevant data

assets.

«container»

Ledger
[stores transactions and business

objects]

«container»

Private_Data_Collections
[stores confidential business

objects]

«person»

Owner

«person»

EPC

«person»

Supplier 1 (S1)

«person»

Supplier 2 (S2)

«person»

NOBO

stores stores storesstores stores

uses uses uses usesusesuses

Figure 4.3.: Component diagram for the Workflow System.

1. Cabinet Contract: This smart contract is responsible for the sub workflow
between the Owner and the EPC. Considering that the order of the cabinet
is strictly handled between the Owner and the EPC it is encapsulated in one
smart contract.

2. Sensor Contract: The sensor contract is responsible for the order of the pressure
sensor. Only the EPC and the Supplier 1 are participating in this sub workflow.

3. Evaluation Contract: The EPC and NOBO use this contract to manage the
sub workflow that leads to the creation of the audit report.

• Private Data Collection: The PDCs are a feature of HLF (see Sec. 3.2.4). They
enable the sharing of confidential data assets between a subset of actors.

• Ledger: The ledger is also a feature of HLF (see Sec. 3.2.1.5). It enables the sharing
of data assets within the HLF blockchain.

In brief, three different smart contracts are created where each manages a bilateral sub
workflow between the EPC and one other organization. Importantly, the multilateral
workflow can be split up into multiple bilateral sub workflows where each sub workflow is
managed by an individual smart contract. In addition, the private data collection (PDC)
is used to share confidential data assets because using the channel’s ledger would share



4. Proposed Design - Fabrication Stage 64

the asset with every channel member. However, only the Cabinet Contract and the Sensor
Contract use a PDC. Importantly, the whole workflow could also have been implemented
as a single smart contract. However, the separation into 3 different contracts is necessary.
The separation enables a deployment of the smart contracts which keeps the business logic
of the contracts confidential. In particular, only the participants of each smart contract
know its contents and this is enabled by the chaincode lifecycle (see Sec. 3.2.1.4).

4.2. Smart Contracts

Section 4.4 showed that three smart contracts are used to implement the complete work-
flow. These resulting smart contracts and their class diagrams are illustrated in Fig. 4.4.
It shows which workflow steps are a part of each smart contract. Also, smart contracts do
not have attributes like the classes of object-oriented programming languages. Therefore,
the attributes that are shown in the class diagram are only showing the association of
data assets with the responsible smart contract. Table 4.1 illustrates this as well. Im-
portantly, the separation into 3 different smart contracts results in 2 redundancies which
are caused by separating the workflow into different smart contracts. It can be argued
that the Cabinet Contract and the Evaluation Contract could be combined. However, the
workflows are separated to keep the business logic confidential between the participants
of the smart contracts:

1. DCDS: The cabinet design specification is created by the Owner. The EPC and
NOBO need it to perform their tasks. The EPC needs it to gather the information
needed to produce the cabinet and to create an offer for the cabinet production.
NOBO needs it to evaluate whether the cabinet satisfies its requirements or not.
However, NOBO does not directly interact with the Owner. Hence, the DCDS is
deployed to the Cabinet Contract and to the Evaluation Contract. The separation
of the smart contracts is the cause for these redundancies. In conclusion, it is the
cost of the confidential smart contracts.

2. DAR: The audit report is the result of the Evaluation Contract and the sub workflow
between the EPC and NOBO. However, the Owner needs to access this audit report
before it can decide if it accepts the cabinet. The Owner does not need to know of
the evaluation contract and the sub workflow between the EPC and NOBO. Hence,
the EPC makes the audit report accessible in the Cabinet Contract.



4. Proposed Design - Fabrication Stage 65

Objects
Smart Contracts Cabinet Sensor Evaluation

DCDS Cabinet Design Specification X X
CCO Cabinet Offer X
DP SS Pressure Sensor Specification X
CP SO Pressure Sensor Offer X
DP SF S Pressure Sensor Fact Sheet X
DEAS EPC Acceptance Sheet X
DCF S Cabinet Fact Sheet X
DAR Audit Report X X
DOAS Owner Acceptance Sheet X

Table 4.1.: Association of data assets and the responsible smart contracts.

Cabinet_Contract

U_INT order_id
String D_CDS
String C_CO
String D_AR
String D_OAS

U_INT request_cabinet_offer(order_id, D_CDS)
String get_cabinet_design_specification(order_id)
void send_cabinet_offer(order_id, C_CO)
String get_cabinet_offer(order_id)
void accept_cabinet_offer(order_id)
void finish_cabinet_delivery(order_id, D_AR)
String get_audit_report(order_id)
void accept_cabinet_delivery(order_id, D_OAS)
String get_owner_acceptance_sheet(order_id)

The cabinet offer (C_CO) is
transmitted via the transient field.

Sensor_Contract

U_INT sensor_order_id
String D_PSS
String C_PSO
String D_PSFS
String D_EAS

U_INT request_pressure_sensor_offer(sensor_order_id, d_pss)
String get_pressure_sensor_specification(sensor_order_id)
void send_pressure_sensor_offer(sensor_order_id, C_PSO)
String get_pressure_sensor_offer(sensor_order_id)
void accept_pressure_sensor_offer(sensor_order_id)
void finish_pressure_sensor_order(sensor_order_id, D_PSFS)
String get_pressure_sensor_fact_sheet(sensor_order_id)
void accept_pressure_sensor_delivery(sensor_order_id, D_EAS)
String get_epc_acceptance_sheet(sensor_order_id)

The pressure sensor offer (C_PSO) is
transmitted via the transient field.

Evaluation_Contract

U_INT evaluation_id
String D_CDS
String D_CFS

U_INT request_evaluation(evaluation_id, D_CDS, D_CFS)
String[] get_evaluation_request(evaluation_id)
void accept_evaluation_request(evaluation_id)
void finish_evaluation_request(evaluation_id,D_AR)
String get_audit_report(evaluation_id)

Figure 4.4.: Class diagram for the smart contracts of the fabrication stage use case.

4.3. Channels

HLF offers the channel feature (see Sec. 3.2.1.7) which allows the separation of the
participating organizations into channels. The result is that the transactions are kept
private from non-channel members. The number of possible channels is huge. If the set of
all participants is Members = {EPC, Owner, NOBO, S1, S2} than the total number of
possible channels (including the empty channel) is equal to the cardinality of the Power
set of the Members: |Members| = 5, |P (Member)| = 25 = 32. Nevertheless, the concept
only uses 2 different channels. Figure 4.5 shows both channels, organizations, and smart
contracts. However, the amount of information density in this diagram is high. Thus,
Table 4.2 shows which organization participates in which channel. Basically, a channel is
created for each distinct access control list AC_i (Tab. 4.5). The access control list of
the Cabinet and the Evaluation sub workflow are the same. The result is the Channel 1.
Further, Channel 2’s participants are the members of the access control list for the Sensor



4. Proposed Design - Fabrication Stage 66

sub workflow.

Channel
Member EPC Owner NOBO S1 S2

Channel 1 X X X
Channel 2 X X X X

Table 4.2.: Channel participation matrix.

Importantly, why is the access control list of the Sensor sub workflow different form the
other two sub workflows. The reason is that the Owner and Suppliers are to be separated.
The eventual Owner of the cabinet does not need to know who the suppliers of the EPC
are. Furthermore, the knowledge of the suppliers may reveal business relations which the
EPC does not want to disclose and this may cause the EPC to not participate in the
workflow system at all. Also, the suppliers do not need to know what their products are
eventually used for. Consequently, the suppliers are separated from the Owner. Further,
Table 4.3 shows to which channel each contract is deployed too. This can also be seen in
Fig. 4.5.

Channel
Contract Cabinet Sensor Evaluation

Channel 1 X X
Channel 2 X

Table 4.3.: Contract deployment matrix.

• Cabinet Contract: It can only be deployed to the channel 1 because it needs the
Owner and the EPC to operate. Both of which are only participating in the channel
1 together.

• Sensor Contract: It can only be deployed to the channel 2 because it needs the
EPC and the S1 to operate. Both of which are only participating in the channel 2
together.

• Evaluation Contract: It could be deployed to both the channel 1 and the channel 2.
This is because the necessary participants are are a part of both channels. However,
the access control list of the evaluation contract states that only the Owner and not
the suppliers may access this contract. Consequently it is deployed on channel 1.

Further, the deployment diagrams A.1 and A.2 illustrate which component is deployed
on which peer in addition to their channel participation.
Next, Table 4.4 lists the chaincode level and collection level endorsement policies (see

Sec. 3.2.2) that are used for the smart contracts and private data collections. Importantly,



4. Proposed Design - Fabrication Stage 67

N

P1
NOBO

EPC

Owner

NOBO

S1

P2
Owner

P3
EPC

P4
S1

L2

Channel 1
L1

S2
Sensor

Contract

S1
Cabinet
Contract

S3  
Eval.

Contract

L2 L1

L1S2 P5
S2

L2 L2 O1
EPC

2 1

Channel 2

S2
Sensor

Contract

Ledger of
channel 1

Smart contract

Peer node

Ordering
Service Node

Channel 1

Smart contract S is
deployed on the C1

Peer P is
connected to C1

L1

S

P

S

S1
Cabinet
Contract

S2
Sensor

Contract

S3  
Eval.

Contract

S1
Cabinet
Contract

S3  
Eval.

Contract

O

C1

S

C1
P
1

2 2

2

2

1

1 1

Figure 4.5.: Channel diagram for the Workflow System.

it is required that a peer must sign endorsements. The reason for this is that the peers
are the components that execute smart contracts which is why they should sign the
endorsements. In addition, the collection level endorsement policies and the chaincode
level endorsement policies are the same. In case of the Cabinet Contract only the EPC and
the Owner invoke functions that change the state of the ledger. Thus, they both have an
interest in enforcing that these changes are made according to the smart contract. Hence,
both must endorse every transaction whether these transactions involve confidential data
or not. Likewise, the same applies to the Sensor Contract. There only the EPC and S1
invoke transactions that change the state of the ledger. Therefore, both want to enforce
that the changes to the ledger are made according to the Sensor Contract. Hence, both
are required to endorse transactions whether they involve the PDC or not. Finally, the
Evaluation Contract is only used by NOBO and EPC. Consequently, both are required
to endorse every transaction. Lastly, Fig. 4.5 also shows that each organization runs one
peer.

Contract Endorsement Policies
Cabinet AND("EPC.peer", "Owner.peer")
PDC1 AND("EPC.peer", "Owner.peer")
Sensor AND("EPC.peer", "S1.peer")
PDC2 AND("EPC.peer", "S1.peer")
Evaluation AND("EPC.peer", "NOBO.peer")

Table 4.4.: Smart contract and PDC endorsement policies.



4. Proposed Design - Fabrication Stage 68

4.4. Formal Description

Previously, a concrete solution for the fabrication stage use case was shown. However,
the solution can also be applied to other multilateral distributed workflows. In general,
a multilateral distributed workflow consists of the following. First, the set of all organi-
zations is O and the number of organizations is |O| = n. Furthermore, the fabrication
stage use case has 5 different organizations n = 5. Second, the overall workflow can be
split up into multiple different sub workflows wi ∈ W . The fabrication stage can be split
up into 3 different sub workflows which is illustrated by Tab. 4.5.. Moreover, each sub
workflow has multiple properties wi = (Pi, Di, Ci, ACi). Pi ⊆ O is the set of participating
organizations of the sub workflow. oj ∈ ACi ⊆ O is an organization that is allowed to
access the transactions of the sub workflow and the non confidential data assets dij ∈ Di.
Importantly, Pi ⊆ ACi which means that the participants of the sub workflow always
have access to the workflow. Next, cj ∈ Ci is a confidential data asset of the sub workflow
wi which must only be accessible to members of Pi. Lets apply this general concept to
the fabrication stage use case of Chap 2.

• O = {EPC,Owner,NOBO, S1, S2} and n = 5

wi Name Pi Ci Di ACi

w1 Cabinet EPC, Owner Cco Dcds, Dar, Doas EPC, Owner, NOBO
w2 Sensor EPC, S1 Cpso Dpss, Dpsfs, Deas EPC, NOBO, S1, S2
w3 Evaluation EPC, NOBO Dcds, Dcfs, Dar EPC, Owner, NOBO

Table 4.5.: Sub workflows of the fabrication stage use case. Pi are the sub workflow
participants, Ci are the confidential data assets, Di are the data assets, and
ACi is the list of organizations that are allowed to access the data assets and
see the transactions of this sub workflow.

Each sub workflow wi will be implemented in its own smart contract. The connection
between the sub workflows is done by the organizations which invoke transactions. The
access control to the sub workflows is implemented through the channel mechanism (see
Sec. 3.2.1.7). In particular, find the minimum number of channels while making sure that
each sub workflow’s access control list ACi is satisfied. Further, a PDC is used to assure
the access control of the confidential data assets. Finally, the participating organizations
o1, o2 are forming the endorsement policy of their sub workflow. The confidentiality of
the sub workflows is assured because the responsible smart contracts are only deployed
on the participating organization’s peers. Lastly, the nodes of the ordering service have
to be distributed to organizations such that the access control lists ACi are satisfied.
Lastly, the policies of a channel on which the workflows wi are deployed is made up



4. Proposed Design - Fabrication Stage 69

such that each organization that participates in a sub workflow that is deployed to the
channel can veto any changes to the CC. Thus, all changes have to made unanimously by
workflow participants. In short, the proposed design can be used for arbitrary multilateral
distributed workflows.

4.5. Ordering and Policy

Next, the structure of the ordering service of the channel 1 (see Sec. 4.5.1) and channel
2 (see Sec. 4.5.2) will be looked at in this section. Moreover, the amount of nodes that
participate in the ordering service is of great importance. If the amount of nodes that
participate in the consensus protocol is N than it can endure the following amount of
node failures.

F (N) =

 N/2 if N is odd
(N/2)− 1 if N is even

For instance, if 3 nodes are participating than F (3) = (3/2) = 1 node can fail. Further,
if 4 nodes participate than F (4) = (4/2) − 1 = 1 node can fail as well. Thus, failure
handling does not improve if 4 nodes are chosen instead of 3. Therefore, it is better to
choose an odd number of nodes. For this thesis we expect the ordering service to still
work if at most 1 node fails. In addition, the policies (see Sec. 3.2.5) which are responsible
for enforcing the governance of the channels are briefly mentioned. Further, only general
terms such as, channel member governance and ordering service governance are used.
Importantly, policies are highly customization in HLF, and they are stored inside the
channel configuration (CC). However, a detailed look at policies is out of the scope of
this thesis.

4.5.1. Channel 1

Figure 4.6 illustrates the ordering service for the channel 1. Importantly, the ordering
service nodes (OSN) are provided by organizations that participate on the channel. The
Raft implementation for the ordering service is used (see Sec. 3.2.1.2). Further, the
number of ordering service nodes (OSN) in the consenter set is three, and the EPC,
NOBO, and the Owner each contribute an OSN to the consenter set. The result is
that F (3) = 1 which means that this configuration can tolerate the failure of 1 node.
In addition, the workflows w1 and w3 run on this channel which means that the EPC,
NOBO and the Owner are participants in sub workflows on this channel. Thus, all of
them have an interest to participate in the shared governance of the ordering service which
is satisfied by this design. Lastly, the ordering service and channel members are governed



4. Proposed Design - Fabrication Stage 70

by the policy AND(EPC.admin, NOBO.admin and Owner.admin). Hence, an unilateral
agreement among the participants of sub workflows on the channel has to be reached in
order to change the relevant policies.

                                                                                                                       N

Ordering Service

O1
EPC

Channel 1

1

1
CC1

EPCNOBOOwner

P3
EPC

P2
Owner

P1
NOBO

111

O2
Owner

O3
NOBO

Peer node

Ordering Service Node
(OSN)

Channel 1

Peer P is connected to C1

OSN O is part of the ordering
service

The ordering service is
ordering channel 1

The channel configuration
for  channel 1

P

O

C1

P
1

O

1

CC1

Figure 4.6.: Configuration for the ordering service for channel 1.

4.5.2. Channel 2

Next, Figure 4.7 illustrates the ordering service for the channel 2. Importantly, the channel
is used for the sub workflow w2 where the EPC and S1 participates. However, if 2 nodes
are used for the ordering service than F (2) = 0 failures can be tolerated. Thus, more
nodes need to be added to the ordering service in order to at least tolerate 1 failure.
One might think that 2 nodes form the EPC and 1 node from S1 would be the solution.
However, such a configuration would enable the EPC to operate a correct ordering service
without S1 which would give the EPC total control over the ordering service. The result
is that one other organization from the channel will be contribute an OSN. In this case
either S2 or NOBO could have been chosen. Figure 4.5.2 shows that S2 has been have been
picked for the design. The result is that F (3) = 1 which means this design can tolerate
1 failure and the governance of the ordering service is split between S1, NOBO, and the
EPC. Further, only w2 is run on this channels and the EPC and S1 are its participants.
The result is that the policies which govern the channel members and the ordering service
is AND(EPC.admin, S1.admin). Thus, only an unilateral decision from the EPC and S1
can change the relevant policies.



4. Proposed Design - Fabrication Stage 71

                                                                                                                       N

Ordering Service

O1
EPC

CC2

EPCNOBO

P3
EPC

P1
NOBO

Peer node

Ordering Service Node
(OSN)

Channel 2

Peer P is connected to C2

OSN O is part of the ordering
service

The ordering service is
ordering channel 2

The channel configuration
for  channel 2

P

O

C1

P

O

2

CC2

S1

P4
S1

S2

P5
S2

2 2

22

Channel 2 2

2

O4
S1

O5
S2

2

Figure 4.7.: Configuration for the ordering service for channel 2.

4.6. Process Flow

Figure B.2 illustrates a more detailed sequence diagram of the fabrication stage use case.
This diagram can be seen as an extension of Fig. 2.4. Importantly, the new diagram
shows the smart contracts which are used to invoke each step workflow. In addition, it
also illustrates which actor invokes which function of which smart contract. In addition,
the diagram also demonstrates which data assets are transferred in each transaction.
Further, the sequence diagram is defines four distinct groups. These groups correspond
to 3 different bilateral sub workflows:

1. EPC ⇐⇒ Owner:

• The Cabinet Order is illustrated in more detail in the sequence diagram Fig.
B.3. Notably, this is the first step that happens in the distributed workflow.

• Finish Cabinet Delivery is described more accurately in the sequence diagram
Fig. B.6. Interestingly, this is the last step that takes place. In brief, the
Cabinet Order and the Finish Cabinet Delivery are a part of the same sub
workflow w1 between the EPC and the Owner.

2. EPC ⇐⇒ Supplier 1: The Pressure Sensor Order is illustrated more detailed
in the sequence diagram Fig. B.4.

3. EPC ⇐⇒ NOBO: The Cabinet Evaluation workflow is depicted in the sequence
diagram Fig. B.5.

Importantly, the more detailed sequence diagrams show more implementation specific
information. For instance, they show where the data assets are stored. Further, it can be



4. Proposed Design - Fabrication Stage 72

seen whether data assets are stored on the ledger or in the a PDC. In addition, they show
an enumeration of the committed transactions that are necessary for the workflow. This
is also shown in the Tab. 4.6. Also, they show smart contract queries which are used by
the actors to read data assets which they need to be able continue the workflow.

Nr Contract Smart Contract Function Data Confidential
C S E Data

1 X request_cabinet_offer order_id, DCDS

2 X send_cabinet_offer order_id CCO

3 X accept_cabinet_offer order_id
4 X request_pressure_sensor_offer sensor_order_id,

DP SS

5 X send_pressure_sensor_offer sensor_order_id CP SO

6 X accept_pressure_sensor_offer sensor_order_id
7 X finish_pressure_sensor_order sensor_order_id,

DP SF S

8 X accept_pressure_sensor_delivery sensor_order_id,
DEAS

9 X request_evaluation evaluation_id,
DCDS, DCF S

10 X accept_evaluation evaluation_id
11 X finish_evaluation evaluation_id,

DAR

12 X finish_cabinet_order order_id, DAR

13 X accept_cabinet_delivery order_id, DOAS

Table 4.6.: Fabrication stage use case transactions. The C stands for Cabinet, S for Sensor,
and E for Evaluation Contract.



5. Implementation

The prototype was implemented for the concept that has been introduced in Chap. 4.
The machine that was use to develop this prototype had the following specs:

• Operation System: Ubuntu 18.04 (bionic)

– Kernel: 5.4.0-66-generic

• CPU: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz

• RAM: 10000 MB

Further, various tools were used to facilitate the development of the prototype. Most
notably, the development environment Visual Studio Code (VSC) [55] in the version
1.5.3 was used. The ability of VSC to provide various extensions was the main reason
for this decision. Importantly, the extension IBM Blockchain Platform [54] is available
in VSC. Further, this extension simplifies the development process of HLF solutions.
In brief, features such as the creation of smart contracts, unit tests, integration tests,
packaging of smart contracts, deployment of smart contracts and the invocation of smart
contract functions are included. Also, Microfab was utilized to simplify the creation
of HLF networks. Micofab “is a containerized Hyperledger Fabric runtime for use in
development environments” [74]. It can be configured with a plain configuration file that
allows for a quick creation of various HLF networks. The configuration that was used for
the implementation is shown in Lst. C.1. Importantly, it lists the number of channels,
the participants of each channel, and all considered organizations.
Further, Sec. 5.1 describes the most important implementation details surrounding the

smart contract development. Finally, Sec. 5.2 analyzes the implementation of the audit
trail.

5.1. Smart Contracts

The three smart contracts Cabinet Contract, Sensor Contract, and Evaluation Contract
were implemented according to the concept of Chap. 4. The contracts were developed
using javascript. Importantly, the IBM Blockchain Platform extension of VSC was used
to create the general folder structure. Figure 5.1 shows a simplified folder structure of



5. Implementation 74

the Cabinet Contract project. The Evaluation Contract and the Sensor Contract have
similar folder structures.

cabinet

lib

cabinet-contract.js

test

cabinet-contract.js

functionalTests

js-smart-contract-util.js

CabinetContract-cabinet@1.0.0.test.js

index.js collection.json

Figure 5.1.: Folder structure of the Cabinet Contract project.

• lib/cabinet-contract.js: This file contains the Cabinet Contract class. The business
logic that is needed for the distributed workflow and the audit trail is implemented
in here.

• test/cabinet-contract.js: The unit tests for the Cabinet Contract class are in this
file.

• functionalTests/:

– js-smart-contract-util.js: Some helper functions that are used by the integration
tests are situated in here. It is automatically generated by the IBM Blockchain
Platform extension. These functions simplify the interaction with the smart
contracts.

– CabinetContract-cabinet@X.Y.Z.test.js: The integration tests for the Cabinet
Contract of the version X.Y.Z are implemented here. These tests directly
interact with the smart contracts that are deployed on the Micofab network.

• index.js: This file exports all of the smart contracts that are to be included in the
cabinet chaincode. In this case only the Cabinet Contract smart contract is a part
of the cabinet chaincode. However, multiple smart contracts may be a part of the
same chaincode [3] (see Fig. 3.5). However, this prototype uses 3 chaincodes for 3
smart contracts.

• collection.json: This file contains the collection definition that is needed for pri-
vate data collection (see Sec. 3.2.4). The collection.json for the Cabinet Contract
contains the definition for PDC1 (see Lst. C.2). The collection.json for the Sensor
Contract defines PDC2. Importantly, the Evaluation Contract does not have a PDC
and thus no collection.json.



5. Implementation 75

Further, Sec. 5.1.1 describes how the smart contracts interact with the world state. Next,
Sec. 5.1.2 demonstrates how a private data collection (PDC) can be used in practice.
Lastly, Sec. 5.1.3 details how access control is implemented in HLF for transactors.

5.1.1. World State

Smart contracts are able to directly interact with the world state which is a part of the
ledger (see Sec. 3.2.1.5). The so-called transaction context is utilized for this purpose.
“It provides access to a wide range of Fabric APIs that allow smart contract developers
to perform operations relating to detailed transaction processing” [3]. Importantly, the
getState and putState operations are used to read from and write to the world state.

1. getState: This function can be used to retrieve an object of the key value store.
For instance, Listing 5.1 illustrates its usage. The code snipped is taken from
the get_cabinet_design_specification function from the Cabinet Contract. The
function getState is called with the parameter order_id in line 1. Importantly, the
getState function is a member of the transaction context. Line 2 parses the returned
value and converts it into a usable object. The result is that an object from the
world state has been read by the smart contract.

1 const buffer = await ctx.stub.getState(order_id);

2 const object = JSON.parse(buffer.toString ());

Listing 5.1: World State read access example from the get_cabinet_design_specification
function.

2. putState: Listing 5.2 shows how objects can be written to the world state. The buffer
contains the object that will be written to the world state. Next, the transaction
context is used to call the putState method. It will write the value buffer to the key
order_id.

1 const buffer = Buffer.from(JSON.stringify ({ d_cds: d_cds}));

2 await ctx.stub.putState(order_id , buffer);

Listing 5.2: World State write access example from the request_cabinet_offer function.

5.1.2. Private Data Collections

The interaction with a private data collection (PDC) can be separated into 4 parts. First,
the PDC has to be defined. This is done through the collection.json file (see Sec. 5.1).
Second, the confidential data has to be sent to the smart contract. Importantly, this the
special transient field (see Sec. 3.2.4) is utilized for this purpose. Next, values can be
read from a PDC. Lastly, private values can be written to the PDC.



5. Implementation 76

1. Collection definition: The collection definition is included in the chaincode definition
and will be committed to the blockchain during the chaincode lifecycle (see Sec.
3.2.1.4). Listing C.2 shows the collection definition that is used for the PDC1
which is used for the Cabinet Contract. Importantly, it can be seen that the policy
states: OR(EPCMSP.member, OwnerMSP.member). It defines that only the EPC
and the Owner are authorized to read and write the PDC1. The result is, that only
the EPC and the Owner can endorse transactions that use the PDC1.

2. Transient field: The transient field is used to provide inputs to smart contract func-
tions that are not a part of the transaction that persists on the blockchain. Hence,
data that will be written to private data collections should usually be transferred
through this mechanism. Importantly, the smart contract function can expect a
transient field and use its contents. However, the transient field layout or contents
are not defined anywhere. For instance, the helper function get_transient_field is
used to access the transient field (See Lst. 5.3). Line 2 accesses the transient map
through the transaction context and stores it. Lines 3-5 check if the Map is not
empty and if the requested field is inside the map. Line 6 returns the contents of
the map. The result is, that the developer has to document the requirements for
transient fields on their own.

1 async function get_transient_field(ctx , fieldname) {

2 const transientData = ctx.stub.getTransient ();

3 if (transientData.size === 0 || !transientData.has(fieldname)) {

4 throw new Error(`The transient field is missing the ${fieldname}

field `);

5 }

6 return transientData.get(fieldname).toString ();

7 }

Listing 5.3: Example for the access of the transient field.

3. putPrivateData: Listing 5.4 shows an example from the send_cabinet_offer function
where the confidential data asset cabinet offer (c_co) is stored in the PDC1. The
main difference between private data and world state write access is that a collection
name has to be specified in the putPrivateData function. Line 1 sets the name to
PDC1. Notably, this name is defined in the collection definition of the Cabinet
Contract (See Lst. C.2).

1 const collectionName = 'PDC1';

2 await ctx.stub.putPrivateData(collectionName , order_id , Buffer.from(

JSON.stringify(c_co)));

Listing 5.4: Private Data write access example from the send_cabinet_offer function.



5. Implementation 77

4. getPrivateData: Listing 5.5 shows an example from the get_cabinet_offer function
where the cabinet offer (c_co) is read from PDC1.

1 const collectionName = 'PDC1';

2 const privateData = await ctx.stub.getPrivateData(collectionName ,

order_id);

3 return JSON.parse(privateData.toString ());

Listing 5.5: Private Data read access example from the get_cabinet_offer function.

Importantly, the queries for PDCs only work as intended if the peer that is executing the
chaincode is also authorized to store the PDC. For instance, NOBO is not authorized to
access PDC1. Consequently, an Error would be thrown whenever the send_cabinet_offer
function were proposed to NOBO’s peer.

5.1.3. Authorization

Importantly, each step of the workflow should only be executable by an authorized subset
of organizations. Hence, each function of a smart contract should be able to specify a
set of authorized transactors. For instance, the request_cabinet_offer function should
only be able to be executed by the Owner. This can be achieved through the transaction
context. Notably, the transactor can be accessed through the transaction context from
inside the smart contract.

1 const identity = await ctx.clientIdentity.getMSPID ();

2 authorize_transactor (['OwnerMSP '], identity);

Listing 5.6: Authorization example from the request_cabinet_offer function.

Listing 5.6 shows an example of this. Line 1 reads the transactor’s identity from the
context. Importantly, this is derived from the signature of the transaction proposal (see
Sec. 3.2.3.2). The getMSPID() function returns the name of the MSP (see Sec. 3.2.1.6)
as a String. The helper function authorize_transactor (see Lst. 5.7) then checks if the
given MSP is authorized to execute the function. Importantly, it can be seen that the
list of authorized transactors is hard coded in this example. The string “OwnerMSP” is
static. This is a simplification and it is not recommended for production implementations.
However, for a demo it is sufficient. Further, Sec. 5.2.2.1 shows how a dynamic access
control list can be implemented. This is recommended for a production environment.

1 function authorize_transactor(list_of_allowed_msps , transactor) {

2 const authorized = list_of_allowed_msps.includes(transactor);

3 if (! authorized) {

4 throw new Error(`This function may only be called by ${list_of_allowed_msps

.toString ()} you are ${transactor}`);



5. Implementation 78

5 }}

Listing 5.7: authorize_transactor function.

5.2. Audit Trail

Further, the execution of the distributed workflow has to produce an audit trail. Impor-
tantly, the private data that is a part of the PDCs must not be leaked with the audit trail.
The transaction log of the ledger (see Sec. 3.2.1.5) contains all the transaction that are
necessary for the audit trail. The result is that it is possible to query all blocks from the
peers and then subsequently create a list of transactions which correspond to a certain
workflow. Then, these transactions could be queried and filtered to find the desired data
for an audit trail. However, this was not implemented in this prototype. The audit trail
was implemented with the smart contracts themselves. This has the advantage that the
authorization of the smart contract functions can be used for the audit trail as well. Two
different options were explored. First, Sec. 5.2.1 explores a manual implementation of
the audit trail. Second, Sec. 5.2.2 shows the automatic implementation.

5.2.1. Manual

Manual approach means that every function that shall add data to the audit trail will be
altered manually. Consequently, a considerable amount of additional development effort
is required. In brief, an additional field called audit_trail is added to the correspond-
ing object. For instance, the cabinet contract object receives an additional field called
audit_trail. This can be seen in Lst. 5.8 in line 1-3.

1 const audit_trail =

2 {request_cabinet_offer: `function : request_cabinet_offer (order_id = ${

order_id}, d_cds = ${d_cds})

3 transactor = ${ctx.clientIdentity.getMSPID ()}` };

4 const buffer = Buffer.from(JSON.stringify ({ d_cds: d_cds , audit_trail:

audit_trail }));

5 await ctx.stub.putState(order_id , buffer);

Listing 5.8: Manual audit trail example from the request_cabinet_offer function.

The audit trail will be extended by each subsequent transaction listed in Tab. 4.6. Further,
the audit trail is distributed across all three contracts. The result is that the audit trail
is governed by the participants of the workflow per design. Regardless, Line 4 shows that
the d_cds and the audit_trail are written to the world state. The audit trail includes
the name of the function, the parameters with which the function was called and the



5. Implementation 79

transactor. However, it can be extended to include the same fields that the automatic
implementation uses.

1 const c_co_hash = crypto.createHash('sha256 ').update(c_co).digest('hex');

2 audit_trail.send_cabinet_offer =

3 `function : send_cabinet_offer (order_id = ${order_id}, Hash(c_co) = ${

c_co_hash }) transactor = ${identity}`;

Listing 5.9: Audit trail example with private data from the send_cabinet_offer function.

Next, Listing 5.9 shows an example from the send_cabinet_offer function where confi-
dential data assets are used. Importantly, the cabinet offer c_co must not be accessible
through the audit trail. Consequently, Line 1 creates a hash from the cabinet offer which
was received through the transient field. Also, a salt should be added to protect against
rainbow tables which were investigated by Oechslin [59]. Further, Line 2-3 adds the audit
trail for the key send_cabinet_offer which includes the hash of the cabinet offer.

5.2.2. Automatic

The second version if the audit trail is automatically created whenever a transaction is
executed. Importantly, the automatic audit trail is implemented once and then creates the
audit trail for every transaction of a smart contract. In contrast, each function has to be
altered for the manual version. The mechanism that is used for this is called transaction
handlers. Notably, three different handlers are available [3]. Each smart contract can
implement these handlers.

• beforeTransaction: This handler gets called before a transaction is executed on a
peer. It can also access the world state.

• afterTransaction: The afterTransaction handler is invoked whenever a transaction
finished its execution. Further, it receives the result of the transaction as an addi-
tional input in contrast the beforeTransaction handler does not have access to the
result.

• unknownTransaction: Whenever a transaction is invoked that is not implemented
this handler is invoked.

The implementation uses the beforeTransaction handler to implement the automatic audit
trail. Listing C.3 shows the implementation of the beforeTransaction handler. Most
notably, it creates an audit trail object in the world state with the key (’audit’ + order_id)
in case of the Cabinet Contract. Each transaction that uses a specific order_id results in
an additional entry in the audit trail object for this order_id. Whenever, the transient field
is used to transfer private data to a smart contract function than a hash of the transient



5. Implementation 80

data is added to the audit trail object. This can be seen in the lines 19-20 and 31. The
following assumptions are made in order for the automatic audit trail implementation to
work.

1. The first argument of all functions is always the id of the object. For instance, the
order_id is used in case of the Cabinet Contract.

2. The key of the audit trail object will not be written to in the actual smart contract
function. If the smart contract function writes to the audit trail object than this
will negate the changes of the beforeTransaction function.

3. The ID’s of the actual business objects don’t start with ’audit’. This would overwrite
the audit trail objects.

5.2.2.1. Authorization

The participants of each smart contract are authorized to access the audit trail. This
is the default configuration. Table 5.1 illustrates the default read access rights for the
audit trails. This authorization is enforced through the method mentioned in Sec. 5.1.3.
However, this method only handles static access control. Further, the audit trail might
have to be shared with other organizations. Consequently, an additional dynamic access
control method was also implemented. In brief, an access control list is maintained for
each audit trail object. The participants of the smart contract are authorized to add and
revoke access dynamically.

1 const identity = ctx.clientIdentity.getMSPID ();

2 const audit_trail_id = 'audit ' + order_id;

3 const buffer = await ctx.stub.getState(audit_trail_id);

4 const object = JSON.parse(buffer.toString ());

5 authorize_transactor(object.access_control_list , identity);

Listing 5.10: Dynamic access control example from the function
get_audit_trail_automatic_access_control_list.

Listing 5.10 shows how the access control list is used to dynamically enforce access control.
First, the transactor is read from the transaction context. Next, the audit trail object is
read from the world state. Finally, the access control list inside the audit trail object is
used to check if the transactor is authorized. Further, the function defined in Lst. C.4
implements the revocation of access for a specific audit trail. Lastly, Listing C.5 is the
implementation which is used to grant access to an audit trail object. Importantly, the
revocation and granting of access to audit trail objects is managed by the participants of
the smart contract. For instance, the access to audit trail objects of the Cabinet Contract



5. Implementation 81

Actors
Audit Trail Cabinet Sensor Evaluation

EPC X X X
NOBO X
Owner X
S1 X
S2

Table 5.1.: Default access control list for the audit trail.

is managed by the EPC and the Owner. Each of them can revoke and grant access to
other organizations. Importantly, this mechanism can be adapted to manage access to
(non) confidential data assets, audit trails and workflow steps. In addition, the revocation
and granting of access could also be governed by a dynamic access control list. However,
this adds complexity which is not needed for the prototype.

5.2.3. Conclusion

The previous sections showed two different implementations for the audit trail. The first
involves more code that has to be added manually. The second involves only one function
that automatically creates the audit trail. However, it makes certain assumptions (see
Sec. 5.2.2) which must hold for the audit trail to be correct. In addition, Sec 5.2.2.1
showed how the access to the audit trail can be statically and dynamically controlled
with access control lists.



6. Evaluation

The following chapter conducts a requirement mapping in Sec. 6.1. Further, it evaluates
whether the requirements for the fabrication stage use case that have been set up in Sec.
2 are satisfied by the proposed approach. In addition, a feature mapping is conducted
in Sec. 6.2. It shows which features of HLF or the proposed approach are responsible
for satisfying which requirement. Next, Sec. 6.3 answers the research questions raised in
Chap. 1. Lastly, Sec. 6.4 proposes attacker models which are applied to the design.

6.1. Requirements Mapping

ID Name Solution SAT
FA01 Asset

Creation
The smart contracts which are deployed to both channels
allow actors to create one or multiple assets depending on
the workflow.

X

FA02 Access
Con-
trol on
Assets

Read access to data assets can be enforced through the
usage of a PDC or multiple channels. Write access is is
enforced through the smart contracts themselves.

X

FA03 Revoking
Access

Write access rights can be revoked through the smart con-
tracts. Read access rights can be revoked if organizations
are removed from channels or the data asset is moved to a
PDC.

X

FA04 Transf.
Assets

The right to manage access through the smart contract can
be transferred trough a transaction, and it is enforced by
the smart contract itself.

X

FA05 Access
Trace-
ability

It is not possible to reliably trace access to data assets. The
transaction flow (see Sec. 3.2.3.2) shows that clients can
decide whether to submit transactions for ordering or not.
Consequently, queries don’t leave traces on the blockchain
if the client decides not to submit the transaction.

X

FA06 AC au-
ditabil-
ity

The access control list is stored in the world state. Conse-
quently, changes made to this list require ordered transac-
tions. Thus, it is known who changes what access control
list for which data asset. An audit trail can be implemented
to make these changes more accessible (see Sec. 5.2).

X

Table 6.1.: Requirements mapping for the functional requirements for data assets of the
fabrication stage use case. (satisfied (SAT))



6. Evaluation 83

ID Name Solution Satisfied
SP01 Actor Auth. Each participant in the HLF network must

have a MSP. Thus, they can authenticate
themselves and have a verifiable identity.

X

SP02 Transaction Auth. The transaction flow of HLF requires that
each transaction proposal is signed by the
transactor.

X

SP03 Identity Management Organizations can use their existing PKI in-
frastructure.

X

SP04 Non-Repudiation Every transaction that is submitted to the
ordering service will be a part of a block in
the blockchain. Consequently, each “inter-
action” that changes the state of the ledger
leaves tamper proof evidence. In addition,
the audit trail makes these interactions more
easily accessible.

X

SP05 Accountability Section 5.2 shows how an audit trail can be
provided. The limitation is that only write
access can be traced reliably.

X

SP06 Data in Transit Conf. Clients, peers and the ordering service can
be configured to use transport layer security
(TLS) with mutual authentication [11, 3].
Hence, the data in transit is cryptographi-
cally protected.

X

SP07 Data at Rest Conf. Confidential data is only stored in a PDC.
These collections are only replicated on au-
thorized peers. Consequently, if the access
to these peers is controlled than the data at
rest confidentiality is assured.

X

SP08 Access Control Channels and a private data collection
(PDC) can be used to control the access to
data assets on a peer level. Authorization
can be used to control access on a transac-
tion or client level.

X

SP09 Integrity The audit trail can be used to verify the in-
tegrity of confidential and not confidential
data assets (see Sec. 5.2).

X

SP10 Organizations Channels enforce that only authorized par-
ticipants can take part in the system (see
Sec. 3.2.1.7).

X

Table 6.2.: Requirements mapping for the security and privacy requirements for the fab-
rication stage use case.

Importantly, this Section checks whether the requirements of Sec. 2 are satisfied. Further,
each requirement will be classified into being satisfied(X) or not satisfied(X). Also, a



6. Evaluation 84

few sentences explain this classification for each requirement. Table 6.1 addresses the
functional requirements for data assets from Tab. 2.2. Next, Table 6.2 addresses the
security and privacy requirements from Tab. 2.3.

6.2. Feature Mapping

Next, Table 6.3 lists all available requirements from Sec. 2.3.2. In addition, each require-
ment is associated with features from HLF. For instance, MSP, transactions PDC, and
channels. Also, requirements may be associated with parts of the proposed design as well.
For instance, authorization (see Sec. 5.1.3 and Sec. 5.2.2.1) and audit trail (see Sec. 5.2).
In brief, the association in the table illustrates which features were most important in
(not) satisfying or the requirement.

ID Authorization Audit Trail MSP Transactions PDC Channels
FA01 X
FA02 X
FA03 X
FA04 X
FA05 (X)
FA06 X
SP01 X
SP02 X
SP03 X
SP04 X X
SP05 X
SP06 X
SP07 X
SP08 X X
SP09 X
SP10 X

Table 6.3.: Mapping of HLF features and implementation concepts to the fabrication
stage’s requirements.

6.3. Research Answers

The following Sec. answers the research questions that have been raised in Tab. 1.1.

RQ1: This thesis identified four key technologies that can enable blockchains to work with
confidential data assets. Chapter 3.1 lists zero-knowledge proof (ZKP), homomor-
phic encryption (HE), trusted execution environment (TEE), and secure multiparty
computation (SMPC) as possible technologies. Further, multiple blockchains were



6. Evaluation 85

also identified in this chapter. In addition, Chapter 3.2 listed Hyperledger Fab-
ric (HLF) in more detail and showed the features which enable this technology to
work with confidential data assets and workflows.

RQ2: The use of different channels and the chaincode lifecycle allows the deployment of
smart contracts which are only accessible to a subset of participants. Hence, confi-
dential workflows are possible with this design. Moreover, the possible endorsement
policies are directly dependent on the deployment of the smart contracts. Thus,
deployment of the smart contracts to fewer peers results in endorsement policies
which can only include these few peers. Further, endorsement policies that are very
restrictive may lead to less availability because the reliance on fewer peers increases
the chance that one of the required peers is unavailable. This increased reliance on
few peers may be compensated with an increased number of peers for that organiza-
tion. In contrast, very unrestricted endorsement policies lead to an increased risk of
malicious smart contracts. Meaning that peers attackers need to control less peers
in order to fulfill the less restrictive endorsement policy. In conclusion, the decision
where to deploy smart contracts and what the endorsement policies look like is not
trivial.

6.4. Attacker /Adversary Models

The proposed solution may be a target of external or internal attackers. However, the
replication of the ledger, endorsement of smart contracts, and consensus models thwart
some attacks. Saad et al. mention attacks on the blockchain structure or peer to peer
communication [64]. However, these attacks are general and cannot be applied to the spe-
cific use case. Consequently, they are not considered. Also, Putz and Pernul lists multiple
vulnerabilities for the Hyperledger Fabric (HLF) blockchain. For instance, vulnerabilities
in the framework, dependencies or in the cryptography [63]. Again, these mentioned vul-
nerabilities are independent from the use case. Also, Yamashita et al. lists potential risks
of HLF smart contracts [81]. In conclusion, this section will define two distinct attacker
models in Sec 6.4.1 that will show the impact of certain aspects of the proposed approach.
Importantly, these models show the impact of certain design decisions (see Chap. 4). For
instance, confidential smart contracts, splitting of smart contracts, endorsement policies,
and replication of peers.



6. Evaluation 86

6.4.1. Attacker Models

Importantly, multiple actors are participating in the blockchain network. Any actor can
act in a malicious way and become an attacker. Actors that are a part of the blockchain
network are called internal attackers. For instance, the EPC, NOBO, Owner, S1 and S2
could be internal attackers if they were to act in a malicious way. A malicious actor that
is not a part of the blockchain network is called an external actor [63]. However, it is
assumed that participating organizations do not act in a malicious way. For example, the
EPC is authorized to store PDC1. Thus, he can simply access the data assets inside of
the PDC and share them without the Owner’s consent. However, it is assumed that the
actors don’t share the data assets out of band or try to manipulate the transaction flow.
This is because these organizations have a preexisting business relationship and trust each
other to this degree. In contrast, this trust can’t be given to customers in a digital rights
management (DRM) use case for streaming services. However, this assumption is taken
for the fabrication stage use case and only external attackers are considered.
Further, to show multiple attack scenarios lets first look at the different components

that are involved. The clients that are shown in Fig. 4.2 are able invoke transactions.
They can send transaction proposals to peers and receive proposal responses. Thus, they
rely on peers to execute transactions. Hence they only provide inputs and receive outputs
of transactions. Importantly, they have no further influence on the execution of the smart
contract functions, and they cannot access the code of the smart contracts.
Next, peers which are shown in Fig 4.5 endorse transactions. Importantly, they have

access to the smart contract code, the ledger, and the private data collections. Im-
portantly, they can refuse to execute transaction proposals and send malicious proposal
responses.
Lastly, the ordering service is shown in Fig. 4.6 and Fig. 4.7. It consists of ordering

service nodes OSNs which all have access to the ledger and actively take part in consen-
sus algorithm. An OSN can refuse to add transactions to blocks or stop participating
in the consensus algorithm altogether. However, ordering service node attacks are not
considered. This is because the Raft implementation is used as the consensus protocol.
Most importantly, this protocol is designed to be and is crash fault tolerant (CFT) (see
Sec. 3.1.2). Consequently, it is not expected to handle a malicious actor (Byzantine
fault (BF)).
Further, a compromise of the certificate authorities which provide the certificates for

each actor is not considered. Putz and Pernul already looked into these kind of attacks
which they called Identity Provider Compromise [63]. In addition, the PKI is not the
focus of this thesis.



6. Evaluation 87

6.4.1.1. Peer Attacker

The Peer Attacker describes an attacker that controls one or multiple peers of the
blockchain network. It can control the actions of that peer. For instance, it can choose
whether to endorse transaction proposals or not. In addition, it can send malicious re-
sponses as an endorsement response. The peer attacker can communicate between the
malicious peers that they control. For instance, they can orchestrate 2 peers to send
malicious proposal responses. The result is that the chaincode is not necessarily executed
and arbitrary changes are made to the world state and private data collections. Also, the
peer attacker has access to all ledgers, PDCs, and chaincodes that the controlled peers
host.

6.4.1.2. Client Attacker

The Client Attacker describes a malicious entity that can take control of an organization’s
client. Thus, it can use this client to propose smart contract invocations. In addition,
it can send these transaction proposals to the ordering service to change the state of
the ledger. Importantly, it cannot access the blockchain, world state, chaincode program
code, and CC directly. Its access is limited by the chaincode’s program code. Therefore,
only the data that is accessible through chaincode queries or invocations is available to
the Client Attacker.

6.4.2. Evaluation

This section evaluates the attacker models that were defined in Sec. 6.4.1.1 and Sec.
6.4.1.2.

6.4.2.1. Peer Attacker

Table 6.4 illustrates how the Peer Attacker can block the execution of smart contracts.
Importantly, it shows 9 different scenarios. Each scenario lists a unique set of peers that
are simultaneously controlled by a Peer Attacker. The following enumeration comments
on the most important cases.

1,3,4: NOBO’s, the Owner’s, and S1’s peer are attacked on their own. The result is
that the endorsement policies for the Evaluation Contract, Cabinet Contract, and
Sensor Contract cannot be satisfied if the attacker refuses to endorse transactions.
However, only one contract is blocked in all of these cases. For instance, in Nr.1
NOBO is attacked. Hence, the Evaluation Contract which needs endorsements from



6. Evaluation 88

NOBO’S peer may be blocked. However, the Sensor Contract and the Evaluation
Contract work as intended because NOBO’s peer does not influence their execution.

2: EPC’s peer is compromised in this case. Importantly, EPC’s peer must endorse all
smart contracts. Consequently, the attacker can block every contract.

8: NOBO’s, the Owner’s, and S1’s peer are marked with (X). This is to illustrate that
the attack on EPC’s peer alone has the same effect on the smart contracts.

9: This case illustrates that the attacker must compromise 3 peers that are not the
EPC’s peer to get the same result. Thus, the concept of Chap. 4 leads peers which
are more or less important for the attacker. Importantly, EPC’s peer is the most
valuable target if the blockage of contracts is desired.

Nr. Attacker Contracts blocked
NOBO EPC Owner S1 Cabinet Sensor Evaluation

1 X X
2 X X X X
3 X X
4 X X
5 X X X X
6 X X X X
7 X X X X
8 (X) X (X) (X) X X X
9 X X X X X X

Table 6.4.: Peer attacker’s ability to block transactions.

Table 6.5 illustrates how the Peer Attacker’s ability to manipulate smart contracts. For
instance, the Cabinet Contract requires two endorsements. One from the EPC’s peer and
one from the Owner’s peer. Hence, the peer attacker that controls both peers can send 2
endorsements that don’t reflect the actual smart contract. Hence, it can be said that the
attacker can manipulate smart contracts. Next, the most important cases are described
in more detail in the following enumeration.

1-4: The attacker only controls one peer in all of these cases. Importantly, the endorse-
ment policies from Tab. 4.4 always require two endorsements. Thus, no manipula-
tion of smart contracts is possible whenever only one peer is compromised.

5-7: In these scenarios the endorsement policies of one contract and the set of attacked
peers are congruent. Thus, exactly one contract is manipulable in each of these
scenarios.



6. Evaluation 89

8: EPC’s peer is not compromised in this scenario. However, EPC’s peer is a part of
every endorsement policy. Therefore, the attacker cannot compromise any contract
without EPC’s peer.

9: If all peers are compromised that all smart contracts are compromised.

Nr. Attacker Contracts manipulated
NOBO EPC Owner S1 Cabinet Sensor Evaluation

1 X
2 X
3 X
4 X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X X X X X

Table 6.5.: Peer attacker’s ability to manipulate smart contracts.

6.4.2.2. Client Attacker

Nr Attacker Transaction name
NOBO EPC Owner S1 S2

1 X request_cabinet_offer
2 X send_cabinet_offer
3 X accept_cabinet_offer
4 X request_pressure_sensor_offer
5 X send_pressure_sensor_offer
6 X accept_pressure_sensor_offer
7 X finish_pressure_sensor_order
8 X accept_pressure_sensor_delivery
9 X request_evaluation
10 X accept_evaluation
11 X finish_evaluation
12 X finish_cabinet_order
13 X accept_cabinet_delivery

Table 6.6.: Lists which transaction a Client Attacker can trigger with malicious intent.

All client attackers gain access to data assets according to Tab. 2.1. The attacker can
query chaincode functions on peers. The peers recognizance the client’s organization and
authorize the access based on that. Section 5.1.3 showed how the authorization is done
inside smart contracts. In addition, the clients may invoke transactions in the name of



6. Evaluation 90

the organizations. Table 6.6 shows all possible transactions that are directly involved in
the workflow execution. Further, the client attacker may also gain access to audit trails
and revoke or grant access. However, this is out of scope.
Nevertheless, the client attacker may trigger workflow steps as one organization which

might have implications for other organizations. For instance, attack Nr. 11 in Tab.
6.6. The attacker compromised NOBO’s client. Thus, it is able to invoke the fin-
ish_evaluation_request instead of an actual employee of NOBO. Thus, an audit report
is committed to the ledger which may contain lies or misinformation. Further, this audit
report is then made accessible to the Owner through the finish_cabinet_order transac-
tion. The result is, that the Owner might reject or accept the delivery of the cabinet
on the basis of an audit report which was not actually produced by NOBO. In brief, the
compromise of a Client can have far reaching consequences based on the use case.

6.4.3. Conclusion

The evaluation of the two attacker models showed that multiple attacks are possible.
Importantly, the Client Attacker model showed that each organization has to handle the
access to their clients with care. Further, the evaluation showed that the authorization
can enforce access control even if the client is malicious. Further, Putz and Pernul noted
that a Client Attacker can flood endorsing peers with a large number of transaction
proposals [63]. Each transaction proposal leads to computations on the endorsing peer.
Also, the transactions might be sent to the ordering service. Consequently, they will lead
to blocks being created and distributed. Therefore, low transaction throughput and high
transaction latency may be the result [63].
Furthermore, the evaluation of the Peer Attacker showed how the interplay of endorse-

ment policies, chaincode deployment and number of peers can lead to manipulable or
blockable smart contracts. Importantly, the desire to have confidential smart contracts
resulted in 3 different smart contracts. In addition, the deployment of these contracts
was limited to the peers which endorse the transactions. Thus, the evaluation of the Peer
Attacker in particular lead to the following insights:

• Multiple Peers: Table 6.4 showed that an attack on a single peer can lead to a
blockage of a smart contract. Hence, it is advisable to have multiple peers for each
organization. Most importantly, the EPC should maintain multiple peers because an
attack on its peer might result in the blockage of all smart contracts. For instance, if
the EPC has n = 6 peers running the Cabinet Contract than the attacker would have
to compromise all of EPC’s peers to block the execution of the Cabinet Contract.
Hence, a peer attacker must compromise more peers if the organization is running



6. Evaluation 91

N

P4
S1

EPC

Owner

NOBO

S1

P3
EPC

P4_1
S1 Channel 1

S2
Sensor

Contract

S1
Cabinet
Contract

S3
Eval.

Contract

S2
P5
S2

2

Channel 2

S2
Sensor

Contract

Smart contract

Peer node

Multiple peer
nodes

Channel 1

Smart contract S is
deployed on the C1

Peer P is
connected to C1

S

P

S

S1
Cabinet
Contract

S2
Sensor

Contract S1
Cabinet
Contract

C1

S

C1
P
1

2 2 1

P3_1
EPC

P2_1
Owner

P5_1
S2

P1_1
NOBO

S2
Sensor

Contract

S1
Cabinet
Contract

12 1

S2
Sensor

Contract

S3
Eval.

Contract S3
Eval.

Contract

S3
Eval.

Contract

PP

Figure 6.1.: Channel diagram for the Workflow System.

multiple peers. Thus, it can be said that more peers protect against blocked smart
contracts.

• Updated Endorsement: Table 6.5 illustrates that if the set of peers that is attacked
is congruent with the endorsement policy of a smart contract than this enables the
attacker to manipulation a smart contract. Consequently, endorsement policies that
require more peers to endorse lead to smart contracts which are harder to manip-
ulated. The reason for this is that the peer attacker must compromise more peers
in order to manipulate the smart contact. In contrast, less restrictive endorsement
policies make it easier for the attacker to manipulate smart contracts because they
don’t have to compromise as many peers to satisfy the endorsement policy. For
instance, the Cabinet Contract requires 2 endorsements in the concept from Chap.
4. However, an endorsement policy which requires 3 peers forces an attacker that
compromises 3 peers to yield the same result.

• Confidential Contracts: The concept that is described in Chap. 4 showed where the
smart contracts were deployed in Fig 4.5. Importantly, the workflow was split into 3
contracts to protect the business logic inside each contract. However, this resulted
in the endorsement policies of Tab. 4.4 which only required 2 endorsements per
contract. Therefore, a compromise of 2 peers results in a possible manipulation.
However, if the smart contracts were deployed to more peers and the endorsement
policy were to be altered as to require more endorsements than the attacker would
have to compromise more peers to be able to manipulate smart contracts.

Now, the gained insights were used to propose an updated concept which aims to compli-
cate the Peer Attacker’s job to block or manipulate smart contracts. Figure 6.1 shows that



6. Evaluation 92

there might be multiple peers deployed for each organization. The exact number depends
on the amount of redundancy that each organization is willing to tolerate. In addition, the
addition of multiple peers may result in a less homogeneous view of the blockchain across
all peers. The result may be more multi-version concurrency check (MVCC) collisions.
Importantly, the Peer Attacker has to compromise all peers to block the smart contract
execution.

Contract Endorsement Policies
Cabinet AND("EPC.peer", "Owner.peer", "NOBO.peer")
PDC1 AND("EPC.peer", "Owner.peer")
Sensor AND("EPC.peer", "S1.peer", "S2.peer", "NOBO.peer")
PDC2 AND("EPC.peer","S1.peer")
Evaluation AND("EPC.peer", "NOBO.peer", "Owner.peer")

Table 6.7.: Updated smart contract Endorsement Policies.

Further, the deployment of the smart contracts has changed in comparison with the
original Fig. 4.5. In particular, the smart contracts are now deployed on all peers that
participate in the channel. For instance, the Sensor Contract is deployed on channel 2.
The result is that it is now deployed to S1’s, S2’S, EPC’s and NOBO’s peers. Conse-
quently, the business logic of these contracts is now shared with the whole channel. The
result is that the Cabinet, Sensor and Evaluation Contract are not confidential contracts
anymore. However, this enables the new more restrictive endorsement policies see Tab.
6.7. The result is that these more restrictive endorsement policies make it harder for the
Peer Attacker to manipulate the Evaluation Contract. The Cabinet and Sensor Contract
contain a private data collection (PDC). Consequently, transactions that write in the
PDC only require the endorsement of these respective policies. Importantly, it is un-
clear whether the collection level endorsement policy can be used by a Peer Attacker to
compromise arbitrary keys in the world state of the respective smart contract.
In brief, the updated proposed approach is a good solution for the fabrication stage

use case. Even though attack scenarios are shown and a comparable solution that uses
a single trusted central authority is more vulnerable to a peer attacker, because a single
compromised node halts the complete workflow. However, the proposed solution only sees
at most a halt of a sub workflow. Thus, the added complexity of the blockchain results
no single point of failure which is arguably favorable.



7. Conclusion and Future Work

Multilateral business processes require organizations to communicate across their organi-
zational boundaries. Consequently, trust in the correct execution of this process has to
be established between the organizations. This thesis demonstrated that a multilateral
distributed business process, the fabrication stage use case, can be realized through the
utilization of Hyperledger Fabric (HLF). The solution satisfies the requirements which
means that all necessary functionality is provided by HLF. Moreover, a multilateral busi-
ness process may require confidential data assets, transactions, and smart contracts. Im-
portantly, the channels, private data collections and the execute-order-validate paradigm
of HLF enable this technology to satisfy the aforementioned requirements. This thesis
presented a concept for the implementation of the fabrication stage use case. Further, a
prototype of the smart contracts was created. Finally, an evaluation based on use case
specific attacker models showed the risks when using a confidential smart contract and a
PDC. In particular, the implementation of confidential smart contracts is prone to lax en-
dorsement policies. Hence, the resulting confidential smart contracts can only be required
to be endorsed by a relatively small amount of peer nodes. Moreover, the evaluation with
the peer attacker model is capable of manipulating or blocking smart contract execution.
Further, the same problem arises when a PDC is used as it also reduces the amount of
peers that can be required to endorse transactions which leads to the same vulnerability.
However, an updated design mitigated the risks of using a PDC and reduced smart con-
tract deployments. In particular, the usage of multiple peers per organization will reduce
the risk of blocked transactions. Also, to reduce the risk of manipulated smart contracts
the deployment of smart contracts was expanded to multiple organizations which can then
be required to endorse such transactions. In conclusion, the updated concept mitigates
the aforementioned vulnerabilities and any single point of failure that a conventional cen-
tralized solution would have is removed. Thus, the use of HLF to implement this kind of
multilateral distributed workflow is recommended.
A few questions remain unanswered and their investigation could enhance the results of

this thesis. In particular, the question remains if lax collection level endorsement policies
for private data collections can be utilized by an attacker to change the whole private
data collection, chaincode’s namespace or the whole world state. In particular, it is of
interest if the weakest endorsement policy can be used by an attacker to change arbitrary



7. Conclusion and Future Work 94

entries of the world state. Further, this may be investigated for key and collection level
endorsement policies as well. The evaluation may require carrying out an actual attack
on peers and creating malicious proposal responses. In addition, a comparison of HLF
for workflow execution and existing workflow execution systems could result in additional
arguments for or against the use of blockchain in this field.
Also, this thesis proposed that organizations maintain multiple peers to reduce the risk

of an attacker blocking the execution of a smart contract by taking over peers. How-
ever, maintaining multiple peers may lead to a less homogeneous view of the blockchain.
Consequently, more peers per organization could lead to more invalid transaction due to
MVCC collisions in the validation phase. Hence, the impact of multiple peers per organi-
zation on the transaction throughput and on the amount of MVCC collisions should be
investigated. Moreover, this information could aid the decision making when it comes to
the number of peers per organization.



Bibliography

[1] Frequently asked questions, 2020. URL https://consensys.net/quorum/faq/.

[2] Hyperledger burrow, 2020. URL https://github.com/hyperledger/burrow.

[3] Hyperledger fabric 2.2, 2020. URL https://hyperledger-fabric.readthedocs.io/

en/release-2.2.

[4] Consensys quorum, 2020. URL https://github.com/ConsenSys/quorum.

[5] Hyperledger fabric 2.3, 2021. URL https://hyperledger-fabric.readthedocs.io/

en/release-2.3.

[6] Consensys quorum private transaction lifecycle, 2021. URL
https://docs.goquorum.consensys.net/en/stable/Concepts/Privacy/

PrivateTransactionLifecycle/.

[7] A library for zero knowledge (zk) scalable transparent argument of knowledge (stark),
2021. URL https://github.com/elibensasson/libSTARK.

[8] P. W. Abreu, M. Aparicio, and C. J. Costa. Blockchain technology in the auditing
environment. In 2018 13th Iberian Conference on Information Systems and Tech-
nologies (CISTI), pages 1–6, 2018. doi: 10.23919/CISTI.2018.8399460.

[9] C. C. Agbo and Q. H. Mahmoud. Comparison of blockchain frameworks for health-
care applications. Internet Technol. Lett., 2(5), 2019. doi: 10.1002/itl2.122. URL
https://doi.org/10.1002/itl2.122.

[10] A. Alharbi, H. Zamzami, and E. Samkri. Survey on homomorphic encryption and
address of new trend. Int. J. Adv. Comput. Sci. Appl, 11(7):618–626, 2020.

[11] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In R. Oliveira, P. Felber, and Y. C. Hu, editors,
Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal,

https://consensys.net/quorum/faq/
https://github.com/hyperledger/burrow
https://hyperledger-fabric.readthedocs.io/en/release-2.2
https://hyperledger-fabric.readthedocs.io/en/release-2.2
https://github.com/ConsenSys/quorum
https://hyperledger-fabric.readthedocs.io/en/release-2.3
https://hyperledger-fabric.readthedocs.io/en/release-2.3
https://docs.goquorum.consensys.net/en/stable/Concepts/Privacy/PrivateTransactionLifecycle/
https://docs.goquorum.consensys.net/en/stable/Concepts/Privacy/PrivateTransactionLifecycle/
https://github.com/elibensasson/libSTARK
https://doi.org/10.1002/itl2.122


Bibliography 96

April 23-26, 2018, pages 30:1–30:15. ACM, 2018. doi: 10.1145/3190508.3190538.
URL https://doi.org/10.1145/3190508.3190538.

[12] E. Androulaki, A. D. Caro, M. Neugschwandtner, and A. Sorniotti. Endorsement
in hyperledger fabric. In IEEE International Conference on Blockchain, Blockchain
2019, Atlanta, GA, USA, July 14-17, 2019, pages 510–519. IEEE, 2019. doi: 10.1109/
Blockchain.2019.00077. URL https://doi.org/10.1109/Blockchain.2019.00077.

[13] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen. Maturity and performance
of programmable secure computation. IEEE Secur. Priv., 14(5):48–56, 2016. doi:
10.1109/MSP.2016.97. URL https://doi.org/10.1109/MSP.2016.97.

[14] N. Arvidsson. Building a Cashless Society. Springer International Publish-
ing, 2019. doi: 10.1007/978-3-030-10689-8. URL https://doi.org/10.1007%

2F978-3-030-10689-8.

[15] E. Bagdasaryan, G. Berlstein, J. Waterman, E. Birrell, N. Foster, F. B. Schneider,
and D. Estrin. Ancile: Enhancing privacy for ubiquitous computing with use-based
privacy. In L. Cavallaro, J. Kinder, and J. Domingo-Ferrer, editors, Proceedings of
the 18th ACM Workshop on Privacy in the Electronic Society, WPES@CCS 2019,
London, UK, November 11, 2019, pages 111–124. ACM, 2019. doi: 10.1145/3338498.
3358642. URL https://doi.org/10.1145/3338498.3358642.

[16] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee. Performance evaluation of the
quorum blockchain platform. CoRR, abs/1809.03421, 2018. URL http://arxiv.

org/abs/1809.03421.

[17] M. A. Barbara. Proof of all: Verifiable computation in a nutshell. CoRR,
abs/1908.02327, 2019. URL http://arxiv.org/abs/1908.02327.

[18] M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: Plat-
forms, applications, and design patterns. In M. Brenner, K. Rohloff, J. Bonneau,
A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakob-
sson, editors, Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April
7, 2017, Revised Selected Papers, volume 10323 of Lecture Notes in Computer Sci-
ence, pages 494–509. Springer, 2017. doi: 10.1007/978-3-319-70278-0\_31. URL
https://doi.org/10.1007/978-3-319-70278-0_31.

[19] D. M. Beazley et al. Swig: An easy to use tool for integrating scripting languages
with c and c++. In Tcl/Tk Workshop, volume 43, page 74, 1996.

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/Blockchain.2019.00077
https://doi.org/10.1109/MSP.2016.97
https://doi.org/10.1007%2F978-3-030-10689-8
https://doi.org/10.1007%2F978-3-030-10689-8
https://doi.org/10.1145/3338498.3358642
http://arxiv.org/abs/1809.03421
http://arxiv.org/abs/1809.03421
http://arxiv.org/abs/1908.02327
https://doi.org/10.1007/978-3-319-70278-0_31


Bibliography 97

[20] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for C:
verifying program executions succinctly and in zero knowledge. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceed-
ings, Part II, volume 8043 of Lecture Notes in Computer Science, pages 90–108.
Springer, 2013. doi: 10.1007/978-3-642-40084-1\_6. URL https://doi.org/10.

1007/978-3-642-40084-1_6.

[21] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014,
pages 459–474. IEEE Computer Society, 2014. doi: 10.1109/SP.2014.36. URL
https://doi.org/10.1109/SP.2014.36.

[22] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46,
2018. URL http://eprint.iacr.org/2018/046.

[23] F. Benhamouda, S. Halevi, and T. Halevi. Supporting private data on hyperledger
fabric with secure multiparty computation. IBM J. Res. Dev., 63(2/3):3:1–3:8,
2019. doi: 10.1147/JRD.2019.2913621. URL https://doi.org/10.1147/JRD.2019.

2913621.

[24] J. B. Bernabé, J. L. Cánovas, J. L. H. Ramos, R. T. Moreno, and A. F. Skarmeta.
Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access, 7:
164908–164940, 2019. doi: 10.1109/ACCESS.2019.2950872. URL https://doi.org/

10.1109/ACCESS.2019.2950872.

[25] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti. Blockchain and
trusted computing: Problems, pitfalls, and a solution for hyperledger fabric. CoRR,
abs/1805.08541, 2018. URL http://arxiv.org/abs/1805.08541.

[26] M. Brenner, W. Dai, S. Halevi, K. Han, A. Jalali, M. Kim, K. Laine, A. Malozemoff,
P. Paillier, Y. Polyakov, et al. A standard api for rlwe-based homomorphic encryp-
tion. Technical report, Technical Report. HomomorphicEncryption. org, Redmond
WA, USA, 2017.

[27] E. Brickell and J. Li. Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integr., 1(1):3–33, 2011. doi: 10.
1504/IJIPSI.2011.043729. URL https://doi.org/10.1504/IJIPSI.2011.043729.

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1109/SP.2014.36
http://eprint.iacr.org/2018/046
https://doi.org/10.1147/JRD.2019.2913621
https://doi.org/10.1147/JRD.2019.2913621
https://doi.org/10.1109/ACCESS.2019.2950872
https://doi.org/10.1109/ACCESS.2019.2950872
http://arxiv.org/abs/1805.08541
https://doi.org/10.1504/IJIPSI.2011.043729


Bibliography 98

[28] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: an introduction. R3 CEV,
August, 1:15, 2016.

[29] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart
contract world. In J. Bonneau and N. Heninger, editors, Financial Cryptography and
Data Security - 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture Notes in
Computer Science, pages 423–443. Springer, 2020. doi: 10.1007/978-3-030-51280-4\
_23. URL https://doi.org/10.1007/978-3-030-51280-4_23.

[30] M. Castro and B. Liskov. Practical byzantine fault tolerance. In M. I. Seltzer and P. J.
Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-
25, 1999, pages 173–186. USENIX Association, 1999. URL https://dl.acm.org/

citation.cfm?id=296824.

[31] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter,
S. Lokam, D. Moody, T. Morrison, et al. Security of homomorphic encryption.
HomomorphicEncryption. org, Redmond WA, Tech. Rep, 2017.

[32] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone.
Report on post-quantum cryptography, 2016-04-28 2016.

[33] L. Chen, K. Chen, S. Zhong, and D. Ye. Privacy protection method of document
management based on homomorphic encryption on the fabric platform. In Pro-
ceedings of the 2019 2nd International Conference on Blockchain Technology and
Applications, ICBTA 2019, page 31–37, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450377430. doi: 10.1145/3376044.3376063. URL
https://doi.org/10.1145/3376044.3376063.

[34] K. R. Choo, A. Dehghantanha, and R. M. Parizi, editors. Blockchain Cybersecurity,
Trust and Privacy, volume 79 of Advances in Information Security. Springer, 2020.
ISBN 978-3-030-38180-6. doi: 10.1007/978-3-030-38181-3. URL https://doi.org/

10.1007/978-3-030-38181-3.

[35] V. Costan and S. Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch., 2016:
86, 2016. URL http://eprint.iacr.org/2016/086.

[36] I. Damgård. Commitment Schemes and Zero-Knowledge Protocols, pages 63–86.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-48969-6. doi:
10.1007/3-540-48969-X_3. URL https://doi.org/10.1007/3-540-48969-X_3.

https://doi.org/10.1007/978-3-030-51280-4_23
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/3376044.3376063
https://doi.org/10.1007/978-3-030-38181-3
https://doi.org/10.1007/978-3-030-38181-3
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/3-540-48969-X_3


Bibliography 99

[37] D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to secure multi-
party computation. Found. Trends Priv. Secur., 2(2-3):70–246, 2018. doi: 10.1561/
3300000019. URL https://doi.org/10.1561/3300000019.

[38] M. Ghadamyari and S. Samet. Privacy-preserving statistical analysis of health data
using paillier homomorphic encryption and permissioned blockchain. In 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, December
9-12, 2019, pages 5474–5479. IEEE, 2019. doi: 10.1109/BigData47090.2019.9006231.
URL https://doi.org/10.1109/BigData47090.2019.9006231.

[39] G. Giuffra. Scalable, transparent, and post-quantum secure computational integrity.
2019.

[40] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-
tive proof-systems (extended abstract). In R. Sedgewick, editor, Proceedings of the
17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985. doi: 10.1145/22145.22178. URL
https://doi.org/10.1145/22145.22178.

[41] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis. Madmax:
analyzing the out-of-gas world of smart contracts. Commun. ACM, 63(10):87–95,
2020. doi: 10.1145/3416262. URL https://doi.org/10.1145/3416262.

[42] I. Grigg. The ricardian contract. In Proceedings. First IEEE International Workshop
on Electronic Contracting, 2004., pages 25–31. IEEE, 2004.

[43] T. Härder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287–317, 1983. doi: 10.1145/289.291. URL https://doi.org/

10.1145/289.291.

[44] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev. What does not fit can be made
to fit! trade-offs in distributed ledger technology designs. In T. Bui, editor, 52nd
Hawaii International Conference on System Sciences, HICSS 2019, Grand Wailea,
Maui, Hawaii, USA, January 8-11, 2019, pages 1–10. ScholarSpace, 2019. URL
http://hdl.handle.net/10125/60143.

[45] N. Khan and M. Nassar. A look into privacy-preserving blockchains. In
16th IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA 2019, Abu Dhabi, UAE, November 3-7, 2019, pages 1–6. IEEE Computer
Society, 2019. doi: 10.1109/AICCSA47632.2019.9035235. URL https://doi.org/

10.1109/AICCSA47632.2019.9035235.

https://doi.org/10.1561/3300000019
https://doi.org/10.1109/BigData47090.2019.9006231
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/3416262
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
http://hdl.handle.net/10125/60143
https://doi.org/10.1109/AICCSA47632.2019.9035235
https://doi.org/10.1109/AICCSA47632.2019.9035235


Bibliography 100

[46] V. Khinchi. Evaluating various transaction processing characteristics of per-
missioned blockchain networks. pages 1–103, 2018. doi: http://dx.
doi.org/10.18419/opus-10105. URL http://nbn-resolving.de/urn:nbn:de:bsz:

93-opus-ds-101223.

[47] T. Kosar and M. Livny. Faults in large distributed systems and what we can do
about them. In J. C. Cunha and P. D. Medeiros, editors, Euro-Par 2005, Parallel
Processing, 11th International Euro-Par Conference, Lisbon, Portugal, August 30 -
September 2, 2005, Proceedings, volume 3648 of Lecture Notes in Computer Science,
pages 442–453. Springer, 2005. doi: 10.1007/11549468\_51. URL https://doi.org/

10.1007/11549468_51.

[48] R. E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975. doi: 10.1145/321864.321877. URL https://doi.org/10.1145/321864.

321877.

[49] Y. Lindell. Secure multiparty computation (MPC). IACR Cryptol. ePrint Arch.,
2020:300, 2020. URL https://eprint.iacr.org/2020/300.

[50] X. Liu, B. Farahani, and F. Firouzi. Distributed Ledger Technology, pages 393–431.
Springer International Publishing, Cham, 2020. ISBN 978-3-030-30367-9. doi: 10.
1007/978-3-030-30367-9_8. URL https://doi.org/10.1007/978-3-030-30367-9_

8.

[51] M. Louk and H. Lim. Homomorphic encryption in mobile multi cloud computing.
In 2015 International Conference on Information Networking, ICOIN 2015, Siem
Reap, Cambodia, January 12-14, 2015, pages 493–497. IEEE Computer Society, 2015.
doi: 10.1109/ICOIN.2015.7057954. URL https://doi.org/10.1109/ICOIN.2015.

7057954.

[52] C. Ma, X. Kong, Q. Lan, and Z. Zhou. The privacy protection mechanism of
hyperledger fabric and its application in supply chain finance. Cybersecur., 2
(1):5, 2019. doi: 10.1186/s42400-019-0022-2. URL https://doi.org/10.1186/

s42400-019-0022-2.

[53] B. Medjahed, M. Ouzzani, and A. K. Elmagarmid. Generalization of ACID prop-
erties. In L. Liu and M. T. Özsu, editors, Encyclopedia of Database Systems, Sec-
ond Edition. Springer, 2018. doi: 10.1007/978-1-4614-8265-9\_736. URL https:

//doi.org/10.1007/978-1-4614-8265-9_736.

http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-101223
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-101223
https://doi.org/10.1007/11549468_51
https://doi.org/10.1007/11549468_51
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://eprint.iacr.org/2020/300
https://doi.org/10.1007/978-3-030-30367-9_8
https://doi.org/10.1007/978-3-030-30367-9_8
https://doi.org/10.1109/ICOIN.2015.7057954
https://doi.org/10.1109/ICOIN.2015.7057954
https://doi.org/10.1186/s42400-019-0022-2
https://doi.org/10.1186/s42400-019-0022-2
https://doi.org/10.1007/978-1-4614-8265-9_736
https://doi.org/10.1007/978-1-4614-8265-9_736


Bibliography 101

[54] Microsoft. Ibm blockchain platform, 2021. URL https://marketplace.

visualstudio.com/items?itemName=IBMBlockchain.ibm-blockchain-platform.

[55] Microsoft. Visual studio code, 2021. URL https://code.visualstudio.com.

[56] S. Nakamoto. A peer-to-peer electronic cash system. Bitcoin.–URL: https://bitcoin.
org/bitcoin. pdf, 4, 2008.

[57] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder. Bitcoin
and Cryptocurrency Technologies - A Comprehensive Introduction. Princeton Uni-
versity Press, 2016. URL https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/

readings/princeton_bitcoin_book.pdf.

[58] P. L. Noac’h, A. Costan, and L. Bougé. A performance evaluation of apache kafka
in support of big data streaming applications. In J. Nie, Z. Obradovic, T. Suzu-
mura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, J. Kepner,
A. Cuzzocrea, J. Tang, and M. Toyoda, editors, 2017 IEEE International Confer-
ence on Big Data, BigData 2017, Boston, MA, USA, December 11-14, 2017, pages
4803–4806. IEEE Computer Society, 2017. doi: 10.1109/BigData.2017.8258548. URL
https://doi.org/10.1109/BigData.2017.8258548.

[59] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In D. Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings, volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer,
2003. doi: 10.1007/978-3-540-45146-4\_36. URL https://doi.org/10.1007/

978-3-540-45146-4_36.

[60] D. Ongaro and J. K. Ousterhout. In search of an understandable consensus algo-
rithm. In G. Gibson and N. Zeldovich, editors, 2014 USENIX Annual Technical
Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, pages
305–319. USENIX Association, 2014. URL https://www.usenix.org/conference/

atc14/technical-sessions/presentation/ongaro.

[61] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999. doi: 10.1007/3-540-48910-X\_16. URL
https://doi.org/10.1007/3-540-48910-X_16.

https://marketplace.visualstudio.com/items?itemName=IBMBlockchain.ibm-blockchain-platform
https://marketplace.visualstudio.com/items?itemName=IBMBlockchain.ibm-blockchain-platform
https://code.visualstudio.com
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf
https://doi.org/10.1109/BigData.2017.8258548
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1007/3-540-48910-X_16


Bibliography 102

[62] J. Polge, J. Robert, and Y. Le Traon. Permissioned blockchain frameworks in the
industry: A comparison. ICT Express, 2020.

[63] B. Putz and G. Pernul. Detecting blockchain security threats. In 2020 IEEE Interna-
tional Conference on Blockchain, Blockchain 2020, Rhodes Island, Greece, November
2-6, 2020, pages 313–320. IEEE, 2020. doi: 10.1109/Blockchain50366.2020.00046.
URL https://doi.org/10.1109/Blockchain50366.2020.00046.

[64] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, S. Shetty, D. Nyang, and A. Mo-
haisen. Exploring the attack surface of blockchain: A systematic overview. CoRR,
abs/1904.03487, 2019. URL http://arxiv.org/abs/1904.03487.

[65] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment: What it
is, and what it is not. In 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland,
August 20-22, 2015, Volume 1, pages 57–64. IEEE, 2015. doi: 10.1109/Trustcom.
2015.357. URL https://doi.org/10.1109/Trustcom.2015.357.

[66] C. Saraf and S. Sabadra. Blockchain platforms: A compendium. In 2018 IEEE
International Conference on Innovative Research and Development (ICIRD), pages
1–6, 2018. doi: 10.1109/ICIRD.2018.8376323.

[67] F. B. Schneider. Byzantine generals in action: Implementing fail-stop processors.
ACM Trans. Comput. Syst., 2(2):145–154, 1984. doi: 10.1145/190.357399. URL
https://doi.org/10.1145/190.357399.

[68] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv., 22(4):299–319, 1990. doi: 10.1145/98163.
98167. URL https://doi.org/10.1145/98163.98167.

[69] SEAL. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, Nov.
2020. Microsoft Research, Redmond, WA.

[70] A. Sforzin, P. Kasinathan, and M. Wimmer. D5.1 require-
ments analysis of demonstration cases phase1. pages 30–41, 2020.
URL https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.

2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_

Submitted.pdf.

[71] A. Sforzin, M. Wimmer, and P. Kasinathan. D5.2 specifica-
tion and set-up demonstration case phase 1. pages 50–71, 2020.
URL https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.

https://doi.org/10.1109/Blockchain50366.2020.00046
http://arxiv.org/abs/1904.03487
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/190.357399
https://doi.org/10.1145/98163.98167
https://github.com/Microsoft/SEAL
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf


Bibliography 103

2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_

Submitted.pdf.

[72] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. doi:
10.1145/359168.359176. URL http://doi.acm.org/10.1145/359168.359176.

[73] T. Shimosawa, T. Sato, and S. Oshima. Bcverifier: A tool to verify hyper-
ledger fabric ledgers. In 2020 IEEE International Conference on Blockchain,
Blockchain 2020, Rhodes Island, Greece, November 2-6, 2020, pages 291–299. IEEE,
2020. doi: 10.1109/Blockchain50366.2020.00043. URL https://doi.org/10.1109/

Blockchain50366.2020.00043.

[74] L. Q. Simon Stone, Matthew B White. Github - ibm-blockchain/microfab, 2021.
URL https://github.com/IBM-Blockchain/microfab.

[75] D. Skeen. Nonblocking commit protocols. In Y. E. Lien, editor, Proceedings of the
1981 ACM SIGMOD International Conference on Management of Data, Ann Arbor,
Michigan, USA, April 29 - May 1, 1981, pages 133–142. ACM Press, 1981. doi:
10.1145/582318.582339. URL https://doi.org/10.1145/582318.582339.

[76] S. Stahnke. Workflow enforcement for certification of the construction of industrial
plants. pages 1–123, 2020.

[77] P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi, and K.-K. R. Choo. A
systematic literature review of blockchain cyber security. Digital Communications
and Networks, 6(2):147 – 156, 2020. ISSN 2352-8648. doi: https://doi.org/10.1016/
j.dcan.2019.01.005. URL http://www.sciencedirect.com/science/article/pii/

S2352864818301536.

[78] M. Valenta and P. Sandner. Comparison of ethereum, hyperledger fabric and corda.
no. June, pages 1–8, 2017.

[79] M. Walport. Distributed ledger technology: beyond block chain. uk gov-
ernment office for science, london. Haettu osoitteesta https://www. gov.
uk/government/publications/distributed-ledgertechnology-blackett-review, 2016.

[80] D. Yaga, P. Mell, N. Roby, and K. Scarfone. Blockchain technology overview. Oct
2018. doi: 10.6028/nist.ir.8202. URL http://dx.doi.org/10.6028/NIST.IR.8202.

[81] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. Potential risks of hyperledger
fabric smart contracts. In 2019 IEEE International Workshop on Blockchain Oriented

https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
https://cybersec4europe.eu/wp-content/uploads/2020/05/D5.2-Specification-and-Set-up-of-Demonstration-Case-Phase-1-v1.0_Submitted.pdf
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1109/Blockchain50366.2020.00043
https://doi.org/10.1109/Blockchain50366.2020.00043
https://github.com/IBM-Blockchain/microfab
https://doi.org/10.1145/582318.582339
http://www.sciencedirect.com/science/article/pii/S2352864818301536
http://www.sciencedirect.com/science/article/pii/S2352864818301536
http://dx.doi.org/10.6028/NIST.IR.8202


Bibliography 104

Software Engineering (IWBOSE), pages 1–10, 2019. doi: 10.1109/IWBOSE.2019.
8666486.

[82] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164. IEEE Computer Society, 1982. doi: 10.1109/SFCS.
1982.38. URL https://doi.org/10.1109/SFCS.1982.38.

[83] F. Zhang, W. He, R. Cheng, J. Kos, N. Hynes, N. M. Johnson, A. Juels, A. Miller,
and D. Song. The ekiden platform for confidentiality-preserving, trustworthy, and
performant smart contracts. IEEE Secur. Priv., 18(3):17–27, 2020. doi: 10.1109/
MSEC.2020.2976984. URL https://doi.org/10.1109/MSEC.2020.2976984.

[84] G. Zyskind. The future of enigma: A letter from the ceo. URL https://blog.

enigma.co/the-future-of-enigma-a-letter-from-the-ceo-c149cf3b0b11.

[85] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computation
platform with guaranteed privacy. CoRR, abs/1506.03471, 2015. URL http:

//arxiv.org/abs/1506.03471.

https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/MSEC.2020.2976984
https://blog.enigma.co/the-future-of-enigma-a-letter-from-the-ceo-c149cf3b0b11
https://blog.enigma.co/the-future-of-enigma-a-letter-from-the-ceo-c149cf3b0b11
http://arxiv.org/abs/1506.03471
http://arxiv.org/abs/1506.03471


Appendices



A. Deployment Diagrams for the Fabrication Stage
Concept

Actors Legend

EPC Engineering Procurement and Construction

EPC_Node

EPC_Peer

Cabinet Contract Sensor Contract Evaluation Contract

Ledger
Channel 1

Ledger
Channel 2

Private Data Collection 1
(PDC1)

Private Data Collection 1
(PDC1)

Channel1 Channel2

member of member of

Figure A.1.: Deployment diagram for the EPC’s node.



A. Deployment Diagrams for the Fabrication Stage Concept 107

Actors Legend
NOBO Notification Body

Owner_Node

Owner_Peer

NOBO_Node

NOBO_Peer

Supplier_Node

Supplier_Peer

Cabinet Contract

Ledger
Channel 1

Private Data Collection 1
(PDC1)

Evaluation Contract

Ledger
Channel 1

Ledger
Channel 2

Sensor Contract

Ledger
Channel 2

Private Data Collection 2
(PDC2)

Channel 1

Channel 2

Figure A.2.: Deployment diagram for the nodes of the Owner, Supplier 1, Supplier 2 and
NOBO.



B. Sequence Diagrams for the Fabrication Stage Concept

Actors
EPC Engineering Procurement and Construction
Owner Owner of the cabinet
NOBO Notification Body
S1 Supplier of the pressure sensor
S2 Supplier that is not involved in the cabinet supply chain

Artifacts
C_ Document is confidential
D_ Document is not confidential
D_CDS Cabinet Design Specification
C_CO Cabinet Offer
D_CFS Cabinet Fact Sheet
D_AR Audit Report
D_OAS Owner Acceptance Sheet
D_PSS Pressure Sensor Specification
C_PSO Pressure Sensor Offer
D_PSFS Pressure Sensor Fact Sheet
D_EAS EPC Acceptance Sheet

Collections Accessible by
L1 Ledger of channel 1 Owner, EPC, NOBO
PDC1 Private Data Collection 1 Owner, EPC
L2 Ledger of channel 2 EPC, S1, S2, NOBO
PDC2 Private Data Collection 2 EPC, S1

Figure B.1.: Legend for the sequence diagrams.



B. Sequence Diagrams for the Fabrication Stage Concept 109

Actors Hyperledger Fabric

Owner

Owner

EPC

EPC

NOBO

NOBO

S1

S1

Cabinet Contract

Cabinet Contract

Evaluation Contract

Evaluation Contract

Sensor Contract

Sensor Contract

Cabinet Order
1 request_cabinet_offer(D_CDS)

2 send_cabinet_offer(C_CO)

3 accept_cabinet_offer()

Pressure Sensor Order
4 request_pressure_sensor_offer(D_PSS)

5 send_pressure_sensor_offer(D_PSO)

6 accept_pressure_sensor_offer()

7 finish_pressure_sensor_order(D_PSFS)

8 accept_pressure_sensor_delivery(D_EAS)

Cabinet Evaluation
9 request_cabinet_evaluation(D_CFS,D_CDS)

10 accept_evaluation_request()

11 finish_evaluation_request(D_AR)

Finish Cabinet Delivery
12 finish_cabinet_delivery(D_AR)

13 accept_cabinet_delivery(D_OAS)

Figure B.2.: Sequence diagram for the Fabrication Stage use case.



B. Sequence Diagrams for the Fabrication Stage Concept 110

Actors Hyperledger Fabric

Owner

Owner

EPC

EPC

Cabinet Contract

Cabinet Contract

L1

L1

PDC1

PDC1

Cabinet Order

request_cabinet_offer
1 request_cabinet_offer(order_ID,D_CDS)

2 order_ID

3 commit_transactionT1(transactor = Owner, data = {order_ID, D_CDS})

4 order_ID, D_CDS

send_cabinet_offer
5 get_cabinet_design_specification(order_ID)

6 D_CDS = read_ledger()

7 D_CDS

8 send_cabinet_offer(order_ID,C_CO)

9 commit_transactionT2(transactor = EPC, data = {order_ID, Hash(C_CO)})

10 order_ID, Hash(C_CO)

11 C_CO

accept_cabinet_offer
12 get_cabinet_offer(order_ID)

13 C_CO = read_private_data_collection()

14 C_CO

15 accept_cabinet_offer(order_ID)

16 commit_transactionT3(transactor = Owner, data = {order_ID, "accept_cabinet_offer"})

17 order_ID, "accept_cabinet_offer"

Figure B.3.: Sequence diagram for the Fabrication Stage use case.



B. Sequence Diagrams for the Fabrication Stage Concept 111

Actors Hyperledger Fabric

EPC

EPC

S1

S1

Sensor Contract

Sensor Contract

L2

L2

PDC2

PDC2

Pressure Sensor Order

request_pressure_sensor_offer
1 request_pressure_sensor_offer(D_PSS)

2 sensor_order_ID

3 commit_transactionT4(transactor = EPC, data = {sensor_order_ID,D_PSS})

4 sensor_order_ID, D_PSS

send_pressure_sensor_offer
5 get_pressure_sensor_specification(sensor_order_ID)

6 D_PSS = read_ledger()

7 D_PSS

8 send_pressure_sensor_offer(sensor_order_ID,C_PSO)

9 commit_transactionT5(transactor = S1, data = {sensor_order_ID, Hash(C_PSO)})

10 sensor_order_ID, Hash(C_PSO)

11 C_PSO

accept_pressure_sensor_offer
12 get_pressure_sensor_offer(sensor_order_ID)

13 C_PSO = read_private_data_collection()

14 C_PSO

15 accept_pressure_sensor_offer(sensor_order_ID,"accept pressure sensor offer")

16 commit_transactionT6(transactor = EPC, data = {sensor_order_ID, "accept pressure sensor offer})

17 sensor_order_ID, "accept pressure sensor offer"

finish_pressure_sensor_order
18 finish_pressure_sensor_order(sensor_order_ID, D_PSFS)

19 commit_transactionT7(transactor = S1, data = {sensor_order_ID, D_PSFS})

20 sensor_order_ID, D_PSFS

accept_pressure_sensor_delivery
21 get_pressure_sensor_fact_sheet(sensor_order_ID)

22 D_PSFS = read_ledger()

23 D_PSFS

24 accept_pressure_sensor_delivery(sensor_order_ID, D_EAS)

25 commit_transactionT8(transactor = EPC, data = {sensor_order_ID, D_EAS})

26 D_EAS

Figure B.4.: Sequence diagram for the Fabrication Stage use case.



B. Sequence Diagrams for the Fabrication Stage Concept 112

Actors Hyperledger Fabric

EPC

EPC

NOBO

NOBO

Evaluation Contract

Evaluation Contract

L1

L1

Cabinet Evaluation

request_evaluation
1 request_evaluation(D_CFS, D_CDS)

2 evaluation_ID

3 commit_transactionT9(transactor = EPC, data = {D_CFS, D_CDS, evaluation_ID})

4 evaluation_ID, D_CFS, D_CDS

accept_evaluation_request
5 get_evaluation_request(evaluation_ID)

6 D_CFS, D_CDS = read_ledger()

7 D_CFS, D_CDS

8 accept_evaluation_request(evaluation_ID)

9 commit_transactionT10(transactor = NOBO, data = {evaluation_ID, "accept_evaluation_request"})

10 evaluation_ID, "accept_evaluation_request"

finish_evaluation
11 finish_evaluation_request(evaluation_ID, D_AR)

12 D_AR

13 commit_transactionT11(transactor = NOBO, data = {evaluation_ID, D_AR})

14 evaluation_ID, D_AR

Figure B.5.: Sequence diagram for the Fabrication Stage use case.



B. Sequence Diagrams for the Fabrication Stage Concept 113

Actors Hyperledger Fabric

Owner

Owner

EPC

EPC

Cabinet Contract

Cabinet Contract

L1

L1

Cabinet Order

request_cabinet_offer

send_cabinet_offer

accept_cabinet_offer

Finish Cabinet Delivery

finish_cabinet_order
1 finish_cabinet_order(order_ID, D_AR)

2 commit_transactionT12(transactor = EPC, data = {order_ID, finish_cabinet_delivery, D_AR})

3 D_AR

accept_cabinet_delivery
4 get_audit_report(order_ID)

5 D_AR = read_ledger()

6 D_AR

7 accept_cabinet_delivery(D_OAS)

8 commit_transactionT13(transactor = Owner, data = {order_ID, D_OAS})

9 order_ID, D_OAS

Figure B.6.: Sequence diagram for the Fabrication Stage use case.



C. Implementation

1 {

2 "endorsing_organizations":[{

3 "name": "EPC"

4 },{

5 "name": "NOBO"

6 },{

7 "name": "Owner"

8 },{

9 "name": "S1"

10 },{

11 "name": "S2"

12 }],

13 "channels":[

14 {

15 "name": "channel1",

16 "endorsing_organizations":[

17 "EPC",

18 "NOBO",

19 "Owner"

20 ]

21 },{

22 "name": "channel2",

23 "endorsing_organizations":[

24 "EPC",

25 "NOBO",

26 "S1",

27 "S2"

28 ]

29 }]

30 }



C. Implementation 115

Listing C.1: Configuration for the Microfab test network that was used throughout the
development process.



C. Implementation 116

1 [

2 {

3 "name": "PDC1",

4 "policy": "OR('EPCMSP.member ', 'OwnerMSP.member ')",

5 "requiredPeerCount": 1,

6 "maxPeerCount": 1,

7 "blockToLive":0,

8 "memberOnlyRead": false,

9 "memberOnlyWrite": false

10 }

11 ]

Listing C.2: Private Data Collection Definition for the PDC1 that is used by the Cabinet
Contract.



C. Implementation 117

1 async beforeTransaction(ctx) {

2 const args = ctx.stub.getArgs ();

3 const transaction_details = ctx.stub.getFunctionAndParameters ();

4 const audit_trail_id = 'audit ' + args [1];

5 const buffer = await ctx.stub.getState(audit_trail_id);

6 let object;

7 if ((!! buffer && buffer.length > 0)) {

8 //parse the existing audit trail

9 object = JSON.parse(buffer.toString ());

10 } else {

11 // create new audit trail object , because it is the first audit trail

entry for this order_id

12 object = { audit_trail: [], access_control_list :[] };}

13 const transientDataMap = ctx.stub.getTransient ();

14 let transient_data_entry;

15 if (transientDataMap.size === 0) {

16 transient_data_entry = null;

17 }else{

18 transient_data_entry = [];

19 for (const [key , value] of transientDataMap.entries ()) {

20 const hashToVerify = crypto.createHash('sha256 ').update(value.

toString ()).digest('hex');

21 transient_data_entry.push([key , hashToVerify ]);}}

22 const identity = ctx.clientIdentity.getMSPID ();

23 const formatted_timestamp = new Date((ctx.stub.txTimestamp.seconds *

1000));

24 formatted_timestamp.setMilliseconds(ctx.stub.txTimestamp.nanos /

1000000);

25 const audit_trail_entry = {

26 timestamp : formatted_timestamp ,

27 transaction_id: ctx.stub.txId ,

28 function_name: transaction_details.fcn ,

29 arguments: args.slice (1),

30 transactor: identity ,

31 transient_data: transient_data_entry}

32 object.audit_trail.push(audit_trail_entry);

33 await ctx.stub.putState(audit_trail_id , Buffer.from(JSON.stringify(

object)));}

Listing C.3: beforeTransaction implementation



C. Implementation 118

1 async revoke_audit_trail_access(ctx , order_id , revoke_msp) {

2 // assert that the cabinet already exists

3 await assert_cabinet_existence(ctx , order_id , true);

4
5 // assert that only the Owner and the EPC can revoke automatic audit trail

access

6 const identity = ctx.clientIdentity.getMSPID ();

7 authorize_transactor (['OwnerMSP ', 'EPCMSP '], identity);

8
9 // retrieve audit trail object

10 const audit_trail_id = 'audit ' + order_id;

11 const buffer = await ctx.stub.getState(audit_trail_id);

12 const object = JSON.parse(buffer.toString ());

13
14 //add authorized msp to the access control list

15 object.access_control_list.push(revoke_msp);

16
17 // remove revoked msp

18 object.access_control_list = object.access_control_list.filter(function(

item) {

19 return item !== revoke_msp

20 })

21
22 // update the audit trail object with the new access control list

23 await ctx.stub.putState(audit_trail_id , Buffer.from(JSON.stringify(object))

);

24 return JSON.stringify(object);

25 }

Listing C.4: revoke_audit_trail_access function



C. Implementation 119

1 async authorize_audit_trail_access(ctx , order_id , authorized_msp) {

2 // assert that the cabinet already exists

3 await assert_cabinet_existence(ctx , order_id , true);

4
5 // assert that only the Owner and the EPC can authorize automatic audit

trail access

6 const identity = ctx.clientIdentity.getMSPID ();

7 authorize_transactor (['OwnerMSP ', 'EPCMSP '], identity);

8
9 // retrieve audit trail object

10 const audit_trail_id = 'audit ' + order_id;

11 const buffer = await ctx.stub.getState(audit_trail_id);

12 const object = JSON.parse(buffer.toString ());

13
14 //add authorized msp to the access control list

15 object.access_control_list.push(authorized_msp);

16 await ctx.stub.putState(audit_trail_id , Buffer.from(JSON.stringify(

object)));

17
18 return JSON.stringify(object);

19 }

Listing C.5: authorize_audit_trail_access function



D. DVD Contents

1. saved_sources.zip: Archived websites.

2. prototype.zip: Code for the prototype.



Abbreviations

ACID atomicity, consistency, isolation, durability
AC access control
AEP authorized endorsing peer
BFT Byzantine-fault tolerant
BF Byzantine fault
CFT crash fault tolerant
CIP computational integrity and privacy
CC channel configuration
CSCC configuration system chaincode
DLT distributed ledger technology
DSL domain specific language
DOS denial of service
DAG directed acyclic graph
DRM digital rights management
EPID enhanced privacy ID
ESCC endorsement system chaincode
FHE fully homomorphic encryption
gRPC remote procedure call
GDPR general data protection regulation
HLF Hyperledger Fabric
HE homomorphic encryption
IAS Intel attestation service
IBFT Istanbul Byzantine fault tolerant
LSCC lifecycle system chaincode
MSP membership service provider
MPC secure multiparty computation
MVCC multi-version concurrency check
OSN ordering service nodes
POW proof of work
PDC private data collection
PBFT practical Byzantine fault tolerance
PKI public key infrastructure
POI proof of identity
PoET proof of elapsed time
PHE partially homomorphic encryption
SAT satisfied
SGX software guard extension
SMPC secure multiparty computation
SWIG simplified wrapper and interface generator
SDK software development kit
SWHE somewhat homomorphic encryption
TEE trusted execution environment



Abbreviations 122

TDAG transaction directed acyclic graph
TLS transport layer security
VSCC validation system chaincode
VSC Visual Studio Code
ZKP zero-knowledge proof
ZK-SNARK zero-knowledge succinct non interactive argument of knowledge
ZK-STARK zero-knowledge scalable transparent argument of knowledge


